Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Imprimir: 2150-766X
ISSN On-line: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.990
pages 974-984

CHARACTERIZATION OF COMBUSTION SPECIES BY REAL TIME FTIR SPECTROSCOPY AT GAS GENERATOR OPERATING PRESSURE

H. R. Blomquist
Manager, Propellant and Combustion Research, TRW Automotive, Occupant Safety Systems, Mesa, Arizona, USA
Stefan T. Thynell
Department of Mechanical Engineering, The Pennsylvania State University University Park, PA 16802
C. F. Mallery
Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA

RESUMO

Gas generant formulations based on sodium azide have proven to be an excellent source of non-toxic, low temperature gas for automotive inflatable restraint systems. Nevertheless, non-azide compositions are desirable to minimize potential environmental releases of sodium azide mixtures. Critical characteristics of candidate non-azide compositions must be efficiently characterized, including high burning rate, breathable combustion products, low hazards, and wide temperature ballistic performance capability. Excellent results have been obtained using a high pressure, windowed, strand burner coupled with species distribution measured in the flame using Fourier Transform Infrared spectroscopy, or FTIR. Candidate formulation T-239 was characterized by these methods and found to have suitable burning rate properties and species distribution for use as an airbag gas generant. This is, in turn, is used as critical input to inflator performance simulation wherein gas phase kinetics are also modeled.


Articles with similar content:

COMBUSTION CHARACTERISTICS OF HYDROXYLAMMONIUM NITRATE AQUEOUS SOLUTIONS
International Journal of Energetic Materials and Chemical Propulsion, Vol.9, 2010, issue 3
Nobuyuki Tsuboi, Tomo Inoue, Shujiro Sawai, Toshiyuki Katsumi, Keiichi Hori, Hiroyuki Ogawa, Ryuta Matsuda
A KINETIC MODEL OF PARTICULATE CARBON FORMATION IN RICH PREMIXED FLAMES OF ETHYLENE AND BENZENE
International Journal of Energy for a Clean Environment, Vol.5, 2004, issue 3
A. D'Anna, A. D'Alessio, A. Violi
A NUMERICAL STUDY ON CHEMICALLY REACTING HIGH SPEED FLOW USING UPWIND FLUX DIFFERENCE SPLITTING METHOD
International Heat Transfer Conference 10, Vol.5, 1994, issue
D. J. Song, K.D. Kwon , S.Y. Won , S.K. Hong
INVESTIGATION OF SOLID OXIDIZER AND GASEOUS FUEL COMBUSTION PERFORMANCE USING AN ELEVATED PRESSURE COUNTERFLOW EXPERIMENT FOR REVERSE HYBRID ROCKET ENGINE
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 6
Grant A. Risha, Terrence L. Connell, Jr., Reed H. Johansson, Gregory Young, Richard A. Yetter
OBSERVATION OF COMBUSTION BEHAVIOR OF LOW MELTING TEMPERATURE FUEL FOR A HYBRID ROCKET USING DOUBLE SLAB MOTOR
International Journal of Energetic Materials and Chemical Propulsion, Vol.15, 2016, issue 5
Ryuichi Kato, Yo Kawabata, Nobuji Kato, Keiichi Hori, Yutaka Wada