Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN Imprimir: 2150-766X
ISSN On-line: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2015011176
pages 421-436

SUPPORTED MnOx /SrO−Al2O3 HIGH-CELL DENSITY HONEYCOMB CERAMIC MONOLITH CATALYST FOR HIGH-CONCENTRATION HYDROGEN PEROXIDE DECOMPOSITION

Chuntian Wu
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Xiaodong Wang
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Xiunan Zhou
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Tianzhuo Yang
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
Tao Zhang
Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China

RESUMO

High-concentration hydrogen peroxide is a potential substitute for a toxic hydrazine monopropellant. There is a pressing need for improved H2O2 decomposition catalysts to both increase bed loading and improve the resistance to a high temperature. In this paper, we describe the effects of Sr addition on the catalytic properties of MnOx/SrO−Al2O3 catalysts for high-concentration hydrogen peroxide decomposition. A structure analysis by temperature-programmed reduction and X-ray diffraction revealed that highly dispersed SrO formed on Al2O3 enhanced the dispersion and reduction capability of Mn species and facilitated the formation of more active Mn4+ species due to restraining the interaction between Mn and Al2O3 and activation of oxygen. Mn4+ species provided the main active site. The addition of Sr increased the catalytic activity and work stability of the MnOx/SrO−Al2O3 monolith catalyst.


Articles with similar content:

THERMITE-BASED COMBUSTION SYNTHESIS OF NIOBIUM SILICIDES/Al2O3 COMPOSITES
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.16, 2012, issue 1
Yu-Shan Huang, Chun-Liang Yeh
CATALYTIC DECOMPOSITION OF H2O2 USING FeCrAl METALLIC FOAM−BASED CATALYSTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.10, 2011, issue 4
C. Augustin, K. Farhat, Yann Batonneau, Charles J. Kappenstein, Rachid Amrousse
HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF Co0.5Zn0.5Fe2O4 NANOMATERIAL AND EVALUATION OF ITS PHOTOCATALYTIC ACTIVITY UNDER VISIBLE-LIGHT IRRADIATION
Nanoscience and Technology: An International Journal, Vol.6, 2015, issue 3
Muhammad Shahzad Saeed, Adil Raza, Ahmed Azam, Muhammad Ahsan
He/H2 Pulsed-Discharge Plasma as a Tool for Synthesis of Surfactant-Free Colloidal Silver Nanoparticles in Water
Plasma Medicine, Vol.6, 2016, issue 1
Sergey Tsarenko, Ilmo Sildos, Tea Avarmaa, Aleksei Treshchalov, Ants Lohmus, Alexander Vanetsev, Rando Saar
ZnO-NANOPARTICLES DECORATED ON CeO2 NANORODS: AN EFFICIENT CATALYST FOR CO OXIDATION
Catalysis in Green Chemistry and Engineering, Vol.1, 2018, issue 4
Benjaram Mahipal Reddy, Damma Devaiah, Deboshree Mukherjee, Perala Venkataswamy, Muga Vithal