Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.28 SNIP: 0.421 CiteScore™: 0.9

ISSN Imprimir: 2150-766X
ISSN On-line: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2020034319
pages 329-340

THERMAL DECOMPOSITION KINETICS OF RDX-BASED PROPELLANTS UNDER DIFFERENT PRESSURES

Zhi-Tao Liu
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Peng Wang
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Fen Zhang
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Xiao-An Wei
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

RESUMO

The thermal decomposition of RDX-based propellants with different RDX contents (40, 30, and 10 wt%) was characterized by high-pressure differential scanning calorimetry at 0.1, 2.0, and 4.0 MPa. The thermal decomposition activation energy of RDX-based propellants with different solid contents and at different pressures was calculated using the Friedman-Reich-Levi, ASTM E698, and Flynn-Wall-Ozawa methods, and the kinetic parameters were calculated using isoconversional methods. The results showed that the differential scanning calorimetry curves of 40 and 30 wt% RDX propellants presented a double peak. The second decomposition peak was more obvious with an increase in RDX content. With an increase in the pressure, the peak temperature decreased and the decomposition heat increased.

Referências

  1. Anniyappan, M., Sonawane, S.H., Pawar, S.J., and Sikder, A.K., (2015) Thermal Decomposition and Kinetics of 2,4-Dinitroimidazole: An Insensitive High Explosive, Thermochim. Acta, 614, pp. 93-99.

  2. Benhammada, A. and Trache, D., (2019) Thermal Decomposition of Energetic Materials Using TG-FTIR and TG-MS: A State-of-the-Art Review, Appl. Spectrosc. Rev, pp. 1-54. DOI: 10.1080/05704928.2019.1679825.

  3. Chelouche, S., Trache, D., Tarchoun, A.F., Abdelaziz, A., Khimeche, K., andMezroua, A., (2019) Organic Eutectic Mixture as Efficient Stabilizer for Nitrocellulose: Kinetic Modeling and Stability Assessment, Thermochim. Acta, 673, pp. 78-91.

  4. Damse, R.S., Omprakash, B., Tope, B.G., Chakraborthy, T.K., and Singh, A., (2009) Study ofN-n-Butyl-N-(2-Nitroxyethyl)Nitramine in RDX based Gun Propellant, J. Hazard. Mater, 167(1-3), pp. 1222-1225.

  5. Damse, R.S., Singh, A., and Singh, H., (2007) High Energy Propellants for Advanced Gun Ammunition based on RDX, GAP, and TAGN Compositions, Propel. Explos. Pyrotech, 32(1), pp. 52-60.

  6. Guo, M., Ma, Z., He, L., He, W., and Wang, Y., (2017) Effect of Varied Proportion of GAP-ETPE/NC as Binder on Thermal Decomposition Behaviors, Stability and Mechanical Properties of Nitramine Propellants, J. Therm. Anal. Calorim., 130(2), pp. 1-10.

  7. Hanafi, S., Trache, D., Abdous, S., Bensalem, Z., and Mezroua, A., (2019) 5-Nitro-1,2,4-Triazole-3-One: A Review of Recent Advances, Chin. J. Energetic Mater, 27(4), pp. 326-347.

  8. Kohga, M., Shigi, D., and Beppu, M., (2019) Detonation Properties of Ammonium Nitrate/Nitramine-Based Composite Propellants, J. Energetic Mater., 37(3), pp. 309-319.

  9. Lee, P.P. and Back, M.H., (1988) Kinetic Studies of the Thermal Decomposition of Nitroguanidine Using Accelerating Rate Calorimetry, Thermochim. Acta, 127, pp. 89-100.

  10. Liu, Z., Zhang, F., Du, P., and Xu, B., (2019) Effect of NQ Content on the Thermal Decomposition of Nitroguanidine Propellant Using Isoconversional Methods, J. Therm. Anal. Calorim., 137(2), pp. 473-480.

  11. Mezroua, A., Khimeche, K., Lefebvre, M.H., Benziane, M., and Trache, D., (2014) The Influence of Porosity of Ammonium Perchlorate (AP) on the Thermomechanical and Thermal Properties of the AP/Polyvinylchloride (PVC) Composite Propellants, J. Therm. Anal. Calorim, 116(1), pp. 279-286.

  12. Muravyev, N.V., Monogarov, K.A., Bragin, A.A., Fomenkov, I.V., and Pivkina, A.N., (2016) HP-DSC Study of Energetic Materials. Part I. Overview of Pressure Influence on Thermal Behavior, Thermochim. Acta, 631, pp. 1-7.

  13. Naya, T. and Kohga, M., (2014) Influences of Particle Size and Content of RDX on Burning Characteristics of RDX-Based Propellant, Aerospace Sci. Technol., 32(1), pp. 26-34.

  14. Sanghavi, R.R., Khire, V.H., Chakraborthy, T.K., and Singh, A., (2006) Studies on RDX Influence on Performance Increase of Triple Base Propellants, Propel. Explos. Pyrotech., 31(4), pp. 318-321.

  15. Tarchoun, A.F., Trache, D., Klapotke, T.M., Chelouche, S., Derradji, M., Bessa, W., and Mezroua, A., (2019) A Promising Energetic Polymer from Posidonia Oceanica Brown Algae: Synthesis, Characterization, and Kinetic Modeling, Macromol. Chem. Phys, 220(22), p.1900358.

  16. Trache, D., (2016) Comments on "Thermal Degradation Behavior of Hypochlorite-Oxidized Starch Nanocrystals under Different Oxidized Levels," Carbohydrate Polymers, 151, pp. 535-537.

  17. Trache, D., Khimeche, K., Mezroua, A., and Benziane, M., (2016) Physicochemical Properties of Micro-crystalline Nitrocellulose from Alfa Grass Fibres and Its Thermal Stability, J. Therm. Anal. Calorim., 124(3), pp. 1485-1496.

  18. Trache, D., Maggi, F., Palmucci, I., and DeLuca, L.T., (2018) Thermal Behavior and Decomposition Kinetics of Composite Solid Propellants in the Presence of Amide Burning Rate Suppressants, J. Therm. Anal. Calorim, 132(3), pp. 1601-1615.

  19. Trache, D. and Tarchoun, A.F., (2018) Stabilizers for Nitrate Ester-Based Energetic Materials and Their Mechanism of Action: A State-of-the-Art Review, J. Mater. Sci., 53(1), pp. 100-123.

  20. Trache, D. and Tarchoun, A.F., (2019) Analytical Methods for Stability Assessment of Nitrate Esters-Based Propellants, Crit. Rev. Anal. Chem, 49(5), pp. 415-438.

  21. Venkatesh, M., Ravi, P., and Tewari, S.P., (2013) Isoconversional Kinetic Analysis of Decomposition of Nitroimidazoles: Friedman Method vs. Flynn-Wall-Ozawa Method, J. Phys. Chem. A, 117(40), pp. 10162-10169.

  22. Vyazovkin, S., Burnham, A.K., Criado, J.M., Perezmaqueda, L.A., Popescu, C., and Sbirrazzuoli, N., (2011) ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data, Thermochim. Acta, 520(1-2), pp. 1-19.

  23. Vyazovkin, S., Chrissafis, K., Lorenzo, M.L.D., Koga, N., Pijolat, M., Roduit, B., Sbirrazzuoli, N., and Sunol, J.J., (2014) ICTAC Kinetics Committee Recommendations for Collecting Experimental Thermal Analysis Data for Kinetic Computations, Thermochim. Acta, 590, pp. 1-23.

  24. Wiegand, D.A., Nicolaides, S., and Pinto, J., (1990) Mechanical and Thermomechanical Properties of NC Base Propellants, J. Energetic Mater., 8(5), pp. 442-461.

  25. Wu, X., Rao, G., Chen, L., Chen, W., Wang, J., and Zhang, C., (2017) Analysis for Decomposition Characteristics and Piecewise Thermokinetics of Nitramine Modified Double-Base Propellant with High Solid Content, Propel. Explos. Pyrotech., 42(10), pp. 1149-1154.

  26. Zhang, F., Liu, Z., and Du, P., (2018) Thermal Decomposition Kinetics of Nitroguanidine Propellant under Different Pressures, Propel. Explos. Pyrotech., 43(4), pp. 390-397.

  27. Zhang, F., Zhu, D., Liu, Q., Liu, Z., and Du, P., (2017) Study on the Effect of RDX Content on the Properties of Nitramine Propellant, Defence Technol., 13(4), pp. 246-248.


Articles with similar content:

PARAFFIN-BASED SOLID FUELS FOR HYBRID PROPULSION FILLED WITH LITHIUM ALUMINUM HYDRIDE: THERMAL, MECHANICAL, AND BALLISTIC CHARACTERIZATION
International Journal of Energetic Materials and Chemical Propulsion, Vol.15, 2016, issue 6
Matteo Boiocchi, Luca Di Landro, Luciano Galfetti
STUDIES ON LOW VULNERABILITY GUN PROPELLANTS BASED ON CONVENTIONAL BINDERS AND ENERGETIC PLASTICIZERS
International Journal of Energetic Materials and Chemical Propulsion, Vol.7, 2008, issue 3
Haridwar Singh, Vruushali Khire
TRANSITION METAL NANO-ALLOYS: POTENTIAL CATALYST FOR THERMAL DECOMPOSITION OF AMMONIUM PERCHLORATE
International Journal of Energetic Materials and Chemical Propulsion, Vol.15, 2016, issue 5
Pravin Ram, Pragnesh N. Dave, Shalini Chaturvedi, Nikul N. Patel
CHARACTERIZATION OF RUBBERY COMPOSITE PROPELLANT AND ITS COMPATIBILITY WITH THE COMPONENTS OF THE 70-mm. ROCKET ENGINES
International Journal of Energetic Materials and Chemical Propulsion, Vol.6, 2007, issue 4
Rodrigo F. A. Guerra, Enrique F. Quinones
PREPARATION AND CHARACTERIZATION OF HMX/GAP-ETPE NANOCOMPOSITES
International Journal of Energetic Materials and Chemical Propulsion, Vol.15, 2016, issue 2
Baoyun Ye, Hequn Li, Mengyuan Du, Jing-Yu Wang, Chongwei An