Inscrição na biblioteca: Guest
Portal Digital Begell Biblioteca digital da Begell eBooks Diários Referências e Anais Coleções de pesquisa
Journal of Environmental Pathology, Toxicology and Oncology
Fator do impacto: 1.625 FI de cinco anos: 1.63 SJR: 0.402 SNIP: 0.613 CiteScore™: 2.3

ISSN Imprimir: 0731-8898
ISSN On-line: 2162-6537

Journal of Environmental Pathology, Toxicology and Oncology

DOI: 10.1615/JEnvironPatholToxicolOncol.2019030625
pages 271-283

Low-Magnitude, High-Frequency Vibration Promotes Osteogenic Differentiation via Intensifying miRNA-335-5p Expression

Wei Zhao
Department of Prosthetics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Yi Tang
Department of Prosthetics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Yang Yang
Department of Prosthetics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Min Wang
Department of Prosthetics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
Haiyang Yu
Department of Prosthetics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China


Certain mechanical stimuli−particularly low-magnitude, high-frequency vibration−could induce bone marrow stem cell osteogenic differentiation and promote bone formation via Wnt signaling pathway, although the molecular mechanism is still unclear. In this study, we found that miR-335-5p is significantly upregulated after low-magnitude, high-frequency vibration, which suppresses the expression of the Wnt signaling inhibitor Dickkopf-related protein 1. Inhibition of miR-335-5p greatly reduced the osteogenic differentiation. Furthermore, the increase of miR-335-5p level was also confirmed in vivo after LMHF vibration in rabbit. Our study elucidates the prominent role of miRNAs that links the LMHF vibration and osteogenic differentiation.


  1. Rubin CT, Capilla E, Luu YK, Busa B, Crawford H, Nolan DJ, Mittal V, Rosen CJ, Pessin JE, Judex S. Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc Natl Acad Sci USA. 2007 Nov 6;104(45):17879-84. PubMed PMID: 17959771. Pubmed Central PMCID: 2077057. Epub.

  2. Shibamoto A, Ogawa T, Duyck J, Vandamme K, Naert I, Sasaki K. Effect of high-frequency loading and parathyroid hormone administration on peri-implant bone healing and osseointegration. Int J Oral Sci. 2018 Mar 13;10(1):6. PubMed PMID: 29531334. Pubmed Central PMCID: 5944597.

  3. Schuurman H-J, Hougen HP, van Loveren H. The rnu (Rowett Nude) and rnuN (nznu, New Zealand Nude) rat: an update. Ilar J. 1992;34(1-2):3-12.

  4. Caplan A, Bruder SP. Cell and molecular engineering of bone regeneration. Principles Tissue Eng. 1997:603-18.

  5. Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Ortho Res. 1998;16(2):155-62.

  6. Gilsanz V, Wren TA, Sanchez M, Dorey F, Judex S, Rubin C. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD. J Bone Mineral Res. 2006 Sep;21(9):1464-74. PubMed PMID: 16939405. Epub 2006/08/31. eng.

  7. Rubin C, Recker R, Cullen D, Ryaby J, McCabe J, Mc Leod K. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J Bone Mineral Res. 2004 Mar;19(3):343-51. PubMed PMID: 15040821. Epub 2004/03/26. eng.

  8. Gray B, Hsu JD, Furumasu J. Fractures caused by falling from a wheelchair in patients with neuromuscular disease. Dev Med Child Neurol. 1992;34(7):589-92.

  9. Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Mineral Res. 2004;19(3):360-9.

  10. Wren TA, Lee DC, Hara R, Rethlefsen SA, Kay RM, Dorey FJ, Gilsanz V. Effect of high-frequency, low-magnitude vibration on bone and muscle in children with cerebral palsy. J Pediatr Ortho. 2010 Oct-Nov;30(7):732-8. PubMed PMID: 20864862. Pubmed Central PMCID: 2946103. Epub 2010/09/25. eng.

  11. Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Anabolism. Low mechanical signals strengthen long bones. Nature. 2001 Aug 9;412(6847):603-4. PubMed PMID: 11493908. Epub 2001/08/09. eng.

  12. Mehta S, McClarren B, Aijaz A, Chalaby R, Cook-Chennault K, Olabisi RM. The effect of low-magnitude, high-frequency vibration on poly(ethylene glycol)-microencapsulated mesenchymal stem cells. J Tissue Eng. 2018 Jan-Dec;9:2041731418800101. PubMed PMID: 30245801. Pubmed Central PMCID: 6146326.

  13. Judex S, Lei X, Han D, Rubin C. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech. 2007;40(6):1333-9. PubMed PMID: 16814792. Epub 2006/07/04. eng.

  14. Zhang X, Vandamme K, Torcasio A, Ogawa T, van Lenthe GH, Naert I, Duyck J. In vivo assessment of the effect of controlled high- and low-frequency mechanical loading on peri-implant bone healing. J Royal Soc Interf. 2012 Jul 7;9(72):1697-704. PubMed PMID: 22279157. Pubmed Central PMCID: 3367822. Epub 2012/01/27. eng.

  15. Wang S, Liu Y, Tang Y, Zhao W, Li J, Yang Y, Du W, Yu H. Direct radial LMHF microvibration induced bone formation and promoted implant osseointegration. Clin Implant Dent Relat Res. 2014 May 22. PubMed PMID: 24852608.

  16. Wang S, Ogawa T, Zheng S, Miyashita M, Tenkumo T, Gu Z, Lian W, Sasaki K. The effect of low-magnitude high-frequency loading on periimplant bone healing and implant osseointegration in Beagle dogs. J Prosthodont Res. 2018 Oct;62(4):497-502. PubMed PMID: 30139715.

  17. Liang YQ, Qi MC, Xu J, Xu J, Liu HW, Dong W, Li JY, Hu M. Low-magnitude high-frequency loading, by whole-body vibration, accelerates early implant osseointegration in ovariectomized rats. Mol Med Rep. 2014 Dec;10(6):2835-42. PubMed PMID: 25270245. Pubmed Central PMCID: 4227418.

  18. Zhou Y, Guan X, Zhu Z, Gao S, Zhang C, Li C, Zhou K, Hou W, Yu H. Osteogenic differentiation of bone marrow derived stromal cells on bone derived scaffolds. Eur Cells Mater. 2011;22:12-25. PubMed PMID: 21732279. Epub 2011/07/07. eng.

  19. Hou WW, Zhu ZL, Zhou Y, Zhang CX, Yu HY. In-volvement of Wnt activation in the micromechanical vibration-enhanced osteogenic response of osteoblasts. J Ortho Sci. 2011 Sep;16(5):598-605. PubMed PMID: 21833614. Epub 2011/08/13. eng.

  20. Mandal CC, Drissi H, Choudhury GG, Ghosh-Choudhury N. Integration of phosphatidylinositol 3-kinase, Akt kinase, and Smad signaling pathway in BMP-2-induced osterix expression. Calcified Tissue Int. 2010 Dec;87(6):533-40. PubMed PMID: 20872216. Pubmed Central PMCID: 3055166. Epub 2010/09/28. eng.

  21. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997 May 30;89(5):765-71. PubMed PMID: 9182764. Epub 1997/05/30. eng.

  22. Franceschi RT, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res. 2003;44 Suppl 1:109-16. PubMed PMID: 12952183. Pubmed Central PMCID: 3564252. Epub 2003/09/04. eng.

  23. Matsubara T, Kida K, Yamaguchi A, Hata K, Ichida F, Me- guro H, Aburatani H, Nishimura R, Yoneda T. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem. 2008 Oct 24;283(43):29119- 25. PubMed PMID: 18703512. Pubmed Central PMCID: 2662012. Epub 2008/08/16. eng.

  24. Zhang Y, Hou W, Liu Y, Long H, Zhang L, Zhu Z, Yu H. Microvibration stimulates beta-catenin expression and promotes osteogenic differentiation in osteoblasts. Arch Oral Biol. 2016 Oct;70:47-54. PubMed PMID: 27328150.

  25. Chen B, Lin T, Yang X, Li Y, Xie D, Zheng W, Cui H, Deng W, Tan X. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: the direct role of Wnt/beta-catenin signaling pathway activation. Int J Mol Med. 2016 Nov;38(5):1531-40. PubMed PMID: 28026000.

  26. Vimalraj S, Selvamurugan N. MicroRNAs: synthesis, gene regulation and osteoblast differentiation. Curr Issues Mol Biol. 2012 May 11;15(1):7-18. PubMed PMID: 22581832. Epub 2012/05/15. Eng.

  27. Tome M, Lopez-Romero P, Albo C, Sepulveda JC, Fernandez-Gutierrez B, Dopazo A, Bernad A, Gonzalez MA. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Diff. 2011 Jun;18(6):985-95. PubMed PMID: 21164520. Pubmed Central PMCID: 3131940.

  28. Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J. Effects of miR-335-5p in modulating osteogenic differ-entiation by specifically downregulating Wnt antagonist DKK1. J Bone Mineral Res. 2011 Aug;26(8):1953-63. PubMed PMID: 21351149. Pubmed Central PMCID: 3810406. Epub 2011/02/26. eng.

  29. Sui L, Wang M, Han Q, Yu L, Zhang L, Zheng L, Lian J, Zhang J, Valverde P, Xu Q, Tu Q, Chen J. A novel Lipidoid-MicroRNA formulation promotes calvarial bone regeneration. Biomaterials. 2018 Sep;177:88-97. PubMed PMID: 29886386. Pubmed Central PMCID: 6019203.

  30. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature. 1998;391(6665):357-62.

  31. Wang FS, Ko JY, Yeh DW, Ke HC, Wu HL. Modulation of Dickkopf-1 attenuates glucocorticoid induction of osteoblast apoptosis, adipocytic differentiation, and bone mass loss. Endocrinology. 2008 Apr;149(4): 1793-801. PubMed PMID: 18174290. Epub 2008/01/05. eng.

  32. MacDonald BT, Joiner DM, Oyserman SM, Sharma P, Goldstein SA, He X, Hauschka PV. Bone mass is inversely proportional to Dkk1 levels in mice. Bone. 2007; 41(3):331-9.

  33. Ling L, Nurcombe V, Cool SM. Wnt signaling controls the fate of mesenchymal stem cells. Gene. 2009 Mar 15;433(1-2):1-7. PubMed PMID: 19135507. Epub 2009/01/13. eng.

  34. Pinzone JJ, Hall BM, Thudi NK, Vonau M, Qiang YW, Rosol TJ, Shaughnessy JD, Jr. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood. 2009 Jan 15;113(3):517-25. PubMed PMID: 18687985. Pubmed Central PMCID: 2628360. Epub 2008/08/09. eng.

  35. Zhang L, Tang Y, Zhu X, Tu T, Sui L, Han Q, Yu L, Meng S, Zheng L, Valverde P, Tang J, Murray D, Zhou X, Drissi H, Dard MM, Tu Q, Chen J. Overexpression of MiR-335-5p promotes bone formation and regeneration in mice. J Bone Mineral Res. 2017 Dec;32(12):2466-75. PubMed PMID: 28846804. Pubmed Central PMCID: 5732062.

  36. Yue J, Wang P, Hong Q, Liao Q, Yan L, Xu W, Chen X, Zheng Q, Zhang L, Huang D. MicroRNA-335-5p plays dual roles in periapical lesions by complex regulation pathways. J Endod. 2017 Aug;43(8):1323-8. PubMed PMID: 28578884.

  37. Zheng L, Tu Q, Meng S, Zhang L, Yu L, Song J, Hu Y, Sui L, Zhang J, Dard M, Cheng J, Murray D, Tang Y, Lian JB, Stein GS, Chen J. Runx2/DICER/miRNA pathway in regulating osteogenesis. J Cell Physiol. 2017 Jan;232(1):182-91. PubMed PMID: 27064596. Pubmed Central PMCID: 5028245.

  38. Tornero-Esteban P, Rodriguez-Rodriguez L, Abasolo L, Tome M, Lopez-Romero P, Herranz E, Gonzalez MA, Marco F, Moro E, Fernandez-Gutierrez B, Lamas JR. Signature of microRNA expression during osteogenic differentiation of bone marrow MSCs reveals a putative role of miR-335-5p in osteoarthritis. BMC Muscu- loskelet Disord. 2015 Aug 5;16:182. PubMed PMID: 26243143. Pubmed Central PMCID: 4526194.

  39. Janko M, Dietz K, Rachor J, Sahm J, Schroder K, Schaible A, Nau C, Seebach C, Marzi I, Henrich D. Improvement of bone healing by neutralization of microR-NA-335-5p, but not by neutralization of microRNA-92A in bone marrow mononuclear cells transplanted into a large femur defect of the rat. Tissue Eng Part A. 2019 Jan;25(1-2):55-68. PubMed PMID: 29652605.

  40. Rawadi G, Vayssiere B, Dunn F, Baron R, Roman-Roman S. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Mineral Res. 2003 0ct;18(10):1842-53. PubMed PMID: 14584895. Epub 2003/10/31. eng.

  41. Blair HC, Sun L, Kohanski RA. Balanced regulation of proliferation, growth, differentiation, and degradation in skeletal cells. Annals New York Acad Sci. 2007 Nov;1116(1):165-73. PubMed PMID: 17646258. Epub 2007/07/25. eng.

  42. MacDougall M, Gu TT, Luan X, Simmons D, Chen J. Identification of a novel isoform of mouse dentin matrix protein 1: spatial expression in mineralized tissues. J Bone Mineral Res. 1998 Mar;13(3):422-31. PubMed PMID: 9525343. Epub 1998/04/03. eng.

  43. Zhou Y, Guan XX, Zhu ZL, Guo J, Huang YC, Hou WW, Yu HY. Caffeine inhibits the viability and osteogenic differentiation of rat bone marrow-derived mesenchymal stromal cells. Br J Pharmacol. 2010 Dec;161(7):1542- 52. PubMed PMID: 20726981. Pubmed Central PMCID: 3010566.

  44. Klein B, Read PA, Babson AL. Rapid method for the quantitative determination of serum alkaline phosphatase. Clin Chem. 1960 Jun;6:269-75. PubMed PMID: 14409655.

  45. Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JA, Li Z, Croce CM, van Wijnen AJ, Stein JL, Stein GS, Lian JB. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem. 2012 Dec 7;287(50):42084-92. PubMed PMID: 23060446. Pubmed Central PMCID: 3516754. Epub 2012/10/13. eng.

  46. Ozcivici E, Luu YK, Adler B, Qin YX, Rubin J, Judex S, Rubin CT. Mechanical signals as anabolic agents in bone. Nature Rev Rheumatol. 2010 Jan;6(1):50-9. PubMed PMID: 20046206. Pubmed Central PMCID: 3743048. Epub 2010/01/05. eng.

  47. Patel MJ, Chang KH, Sykes MC, Talish R, Rubin C, Jo H. Low magnitude and high frequency mechanical loading prevents decreased bone formation responses of 2T3 preosteoblasts. J Cellular Biochem. 2009 Feb 1;106(2):306-16. PubMed PMID: 19125415. Pubmed Central PMCID: 2737721. Epub 2009/01/07. eng.

  48. Dumas V, Ducharne B, Perrier A, Fournier C, Guignandon A, Thomas M, Peyroche S, Guyomar D, Vico L, Rattner A. Extracellular matrix produced by osteo-blasts cultured under low-magnitude, high-frequency stimulation is favourable to osteogenic differentiation of mesenchymal stem cells. Calcified Tissue Int. 2010 Oct;87(4):351-64. PubMed PMID: 20582583. Epub 2010/06/29. eng.

  49. Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ. Update on Wnt signaling in bone cell biology and bone disease. Gene. 2012 Jan 15;492(1):1-18. PubMed PMID: 22079544. Pubmed Central PMCID: 3392173. Epub 2011/11/15. eng.

Articles with similar content:

Nitrosothiol Signaling in Anoikis Resistance and Cancer Metastasis
Forum on Immunopathological Diseases and Therapeutics, Vol.3, 2012, issue 2
Neelam Azad, Anand Krishnan V. Iyer, Liying Wang, Sudjit Luanpitpong, Yon Rojanasakul
Mechanical Signaling for Bone Modeling and Remodeling
Critical Reviews™ in Eukaryotic Gene Expression, Vol.19, 2009, issue 4
Alexander G. Robling, Charles H. Turner
Raf Kinase Inhibitory Protein: A Signal Transduction Modulator and Metastasis Suppressor
Forum on Immunopathological Diseases and Therapeutics, Vol.2, 2011, issue 1
Marsha Rich Rosner, Eva M. Eves
ALDOB Acts as a Novel HBsAg-Binding Protein and Its Coexistence Inhibits Cisplatin-Induced HepG2 Cell Apoptosis
Critical Reviews™ in Eukaryotic Gene Expression, Vol.24, 2014, issue 3
Can Dan, Yun-Peng Liu, Jian-Lin Ren, Chuan-Xing Xiao, Li-Juan Si, Jing Wu, Hong-Bo Zhao, Bayasi Guleng
Lion's Mane Medicinal Mushroom, Hericium erinaceus (Agaricomycetes), Modulates Purinoceptor-Coupled Calcium Signaling and Murine Nociceptive Behavior
International Journal of Medicinal Mushrooms, Vol.19, 2017, issue 6
Li-Yen Shiu, Sheau-Huei Chueh, Chin-Chu Chen, Pei-Shan Liu , Li-Ya Lee