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Transformed normal random fields are convenient models, e.g., for random material property fields obtained from mi-
crostructure analysis. In the context of the stochastic finite-element (FE) method, discretization of non-normal random
fields by polynomial chaos expansions has been frequently employed. This introduces a non-linear relationship between
the system matrix and normal random variables. For transformed normal random fields, the truncated Karhunen-Loève
expansion of the transformed field is introduced into the stochastic FE formulation. This leads to a linear dependence
of the system matrix on non-normal random variables. These non-normal random variables are then utilized to rep-
resent the discretized solution of the stochastic boundary value problem. Introduction of the approximations into the
variational formulation of the stochastic boundary value problem and application of a collocation scheme yields a non-
intrusive algorithm that allows coupling of reliability estimation procedures and existing FE solvers.
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1. INTRODUCTION

Local properties of heterogeneous materials have been described in the past by transformed normal random fields (e.g.,
[1]). In contrast to normal random fields, non-normal fields may take into account the bounds of material properties
and the asymmetry observed in histograms. Transformed normal random fields represent a large class of non-normal
random fields that can be rather easily characterized due to the relation to an underlying normal random field.

In order to obtain local stress or displacement fields for structures, stochastic boundary value problems can be
formulated by introducing random parameter fields into the differential equations of continuum mechanics. For the
solution of these stochastic boundary value problems polynomial chaos expansions of response quantities have been
widely utilized and are well documented [2–5]. In its original formulation in [2], a linear stochastic differential oper-
ator is discretized by a Karhunen-Loève expansion (KLE)—or a projection on the homogeneous chaos—and Hermite
polynomials are introduced in order to represent the stochastic part of the solution, while finite-element (FE) dis-
cretizations are employed for the deterministic part. A Galerkin projection is then applied in order to determine the
unknown expansion coefficients. This procedure has been extended to nonlinear problems e.g. in [4, 6].

For linear stochastic differential operators involving non-normal random fields, several authors propose a polyno-
mial chaos representation of the random field and the solution [2, 4]. This approach has been extended in [7] to more
general polynomial chaos families, belonging to the Askey scheme.

The theoretical foundation of Galerkin methods for stochastic elliptic partial differential equations has been laid
in [4, 8, 9], where local and global polynomial chaos expansions were investigated and where a priori error estimates
have been proved for a fixed number of terms of the KLE. In addition, solution methods for the algebraic problem
were presented and analyzed in [10].
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In recent years, several authors proposed stochastic collocation schemes instead of a Galerkin projection for the
determination of quantities of interest [11–13]. Relations between the stochastic Galerkin method and the colloca-
tion approach have been clarified in [14]. A stochastic collocation scheme leads to non-intrusive algorithms, which
allow computing the coefficients from repetitive runs of an FE solver for deterministic problems. If the dimension of
the stochastic domain becomes high, sparse grid collocation procedures have been applied [15–17]. A non-intrusive
algorithm based on least-squares regression has been presented in [18].

Recent developments include the application of polynomial chaos representations to the solution of stochastic
systems; e.g., by introducing wavelet expansions [19] or local approximations [20], convergence acceleration by
enrichment of the polynomial basis [21], reduction methods [22, 23] and multiscale approaches [24–26], to mention
just a few.

Although the focus of most investigations concerning the approximate solution of stochastic boundary value prob-
lems have been on the computation of the first- and second-order moments of the solution, previously in [2] reliability
computation techniques were described, which are based on series representations of the response distribution, the
reliability index or Monte Carlo simulation techniques. In most of the papers that followed (e.g., [27, 28], and ref-
erences therein), either the reliability index or simulation techniques have been employed. The approximate solution
of the boundary value problem has been considered as a response surface. However, as has been pointed out in [29],
a global approximation with Hermite polynomials might not be well suited to yield accurate higher-order moments
or the distribution of the solution. Therefore, local approximations around the point of most probable failure have
been introduced in [30]. In the context of the stochastic FE method, approximate solutions of the stochastic boundary
value problem can be viewed as local stochastic response surfaces that depend on three quantities: the discretization
level of the input random field, discretization parameter for the physical domain, and discretization parameter for the
stochastic domain. Thus, a stochastic response surface can be viewed as a member of a three parameter family of
metamodels. Alternatively, once the random field is discretized, sampling-based response surfaces [31, 32] could be
considered as well.

In this paper, non-normal random fields that are transformations of normal random fields are considered. Three
approaches to deal with stochastic boundary value problems involving transformations of non-normal random fields
can be distinguished:

1. Simulation of the normal random field and application of the transformation in order to obtain samples of the
non-normal random field.

2. Discretization of the non-normal random field by a (generalized) polynomial chaos representation.

3. KLE of the non-normal and the normal random field and explicit computation of the relationship between the
non-normal and the normal random variables involved in the KLE.

Neither the first nor the second approach allow representing the non-normal random field by non-normal random
variables, which could be advantageous (e.g., for sensitivity studies). The second approach might introduce significant
approximation errors [29] and lead to a high number of expansion terms for the discretized random field.

On the other hand, the KLE is very efficient, because a linear dependence of the system matrix on the non-
normal random variables is obtained. The eigenfunctions of the covariance kernel of the non-normal random field
can be evaluated numerically. Unfortunately, the probability density function of the non-normal random variables
is not available in analytical form, but samples of the non-normal random variables can be generated from samples
of the underlying normal random variables. Therefore, application of a non-intrusive solution procedure based on
a collocation scheme or a simulation-based algorithm make sense. In this investigation, collocation and simulation
are connected to each other. In the stochastic domain, local approximations as well as global approximations based
on a sparse grid interpolation scheme are introduced for the solution of the stochastic boundary value problem. For
reliability assessment, a Monte Carlo simulation technique is introduced that makes use of the most probable point of
failure (MPP), although other methods such as subset simulation or line sampling [33, 34] could be applied as well.

The paper is organized as follows. Section 2 introduces a stochastic linear elliptic boundary value problem as
the model problem for structures with linear elastic but spatially random material properties. Section 3 discusses
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the discretization of the transformed normal random field, Section 4 formulates the sparse collocation scheme, and
Section 5 summarizes the proposed solution procedure. Section 6 briefly highlights reliability estimation methods.
Finally, Section 7 presents two applications of the proposed method and in Section 8 conclusions are drawn.

2. STOCHASTIC LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

LetD be a convex bounded open set inRn and(Ω,F , P ) a complete probability space, whereΩ is the set of outcomes,
F the σ field of events, andP : F → [0 : 1] a probability measure. Consider the following model problem with
stochastic operator and deterministic input function onD̄ × Ω: find u : D̄ × Ω → R, such thatP almost surely:

−∇ · α(x, ω)∇u(x, ω) = f(x) onD, u(x, ω) = 0 on∂D. (1)

It is assumed that the deterministic input functionf(x) is square integrable and that the random fieldα : D×Ω → R
has a continuous and square-integrable covariance function

C(x, y) =
∫

Ω

{α(x, ω)− E[α](x)}{α(y, ω)− E[α](y)}d P (ω), (2)

where the expectation operatorE[α](x) =
∫
Ω

α(x, ω) d P (ω) denotes the mean value of the random field. Moreover,
it is assumed thatα(x, ω) is bounded and coercive; i.e., there exists positive constantsamin, amax, such that

P [ω ∈ Ω : amin < α(x,ω) < amax∀x ∈ D] = 1. (3)

We are interested in the probability that a functionalF (u) of the solutionu(x, ω) exceeds a thresholdF0; i.e., we
want to evaluate the integral

PF =
∫

Ω

χ(F0,∞){F [u(x, ω)]}dP (ω), (4)

whereχI(·), the indicator function, assumes the value 1 in the intervalI and vanishes elsewhere.
The variational formulation of the stochastic boundary value problem necessitates the introduction of the Sobolev

spaceH1
0 (D) of functions having generalized derivatives inL2(D) and vanishing on the boundary∂D with norm

||u||H1
0 (D) = (

∫
D
|∇u|2 d x)1/2, the spaceL2

P (Ω) of square integrable random variables, and the tensor product space
H1

0 (D)⊗L2
P (Ω) of H1

0 (D)-valued random fields with finite second-order moments, equipped with the inner product

(u, v)H1
0 (D)⊗L2(Ω) =

∫

Ω

∫

D

∇u(x,ω) · ∇v(x,ω) d xdP (ω). (5)

The variational formulation of the stochastic linear elliptic boundary value problem [Eq. (1)] then reads: findu ∈
H1

0 (D)⊗ L2
P (Ω), such that for allv ∈ H1

0 (D)⊗ L2
P (Ω):

∫

Ω

∫

D

α(x, ω)∇u · ∇v dxd P (ω) =
∫

Ω

∫

D

f(x)v(x, ω) d xdP (ω). (6)

The assumptions on the random fieldα(x, ω) guarantee the continuity and coercivity of the bilinear form in Eq. (6)
and, thus, the existence and uniqueness of a solution to Eq. (6) follows from the Lax-Milgram lemma.

The random fieldα(x, ω) will now be replaced by a finite series of uncorrelated random variables. Due to the
properties of the covariance function, the operatorT : L2(D) → L2(D),

Tu =
∫

D

C(x, y)u(x) d x, (7)

is compact and self-adjoint and, thus, admits a spectrum of decreasing non-negative eigenvalues{λi}∞i=1. The corre-
sponding eigenfunctions{φi(x)}∞i=1 are orthonormal inL2(D). The random variables given by

ξi(ω) =
1√
λi

∫

D

{α(x, ω)− E[α](x)}φi(x) d x (8)
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are uncorrelated (but, in general, not independent), have zero mean and unit variance and allow representing the
random field by the KLE

α(x, ω) = E[α](x) +
∞∑

i=1

√
λiξi(ω)φi(x), (9)

that converges inL2(D × Ω) [35]. Conditions for stronger convergence properties are given in [9]. The KLE is
usually truncated by retaining only the firstM terms. This truncation is optimal in the sense that the mean-square
error resulting from a finite representation ofα(x, ω) is minimized. In order to keep the computational effort small,
a fast decay of the spectrum of Eq. (7) is important. It was shown in [36] that fast eigenvalue decay corresponds to
smoothness of the covariance function.

3. DISCRETIZATION OF TRANSFORMED NORMAL RANDOM FIELDS

Consider now the case thatα(x, ω) is a transformed normal random field; i.e.,α(x,ω) is given byα(x, ω) =
T [g(x, ω)] , whereg(x, ω) is a normal random field andT (.) a nonlinear transformation. Several methods to select
T (.) have been discussed in the literature, cf. e.g. [1, 37].

In order to take advantage of the fact that the non-normal random field is a transformed normal random field,
both the normal and the non-normal random field are discretized and the relationship between the normal and the
non-normal random variables is computed. To this end, the truncated KLEgm(x, ω) of the normal random field is in-
troduced. However, the KLE ofT [gm(x, ω)] necessitates the computation of the covariance function ofT [gm(x, ω)],
which might be cumbersome to compute. In the following, the covariance function of the transformed normal random
field has been used instead.

The KLE of the normal random fieldg(x, ω) is given by

g(x, ω) = E[g](x) +
∞∑

i=1

√
λGiξGi(ω)φGi(x). (10)

wheregm(x, ω) denotes the truncation of Eq. (10) to orderm. In the following, eigenvaluesλNGi and eigenvectors
φNGi are related to the operator

TNGu =
∫

D

CNG(x, y)u(x) d x, (11)

whereCNG(x, y) is the covariance function of the transformed normal field. The non-normal random fieldα(x, ω) =
T [g(x, ω)] is approximated by

αM (x, ω) = E[α](x) +
M∑

i=1

√
λNGiξNGi(ω)φNGi(x), (12)

whereξNGi(ω), i = 1, 2, . . . , M are the non-normal random variables

ξNGi(ω) =
1√

λNGi

∫

D

{T [gm(x,ω)]− E[T (gm(x, ω))]}φNGi(x) d x. (13)

The series representation [Eq. (12)], being neither the KLE ofT [g(x, ω)] nor of T [gm(x, ω)], does not possess the
error minimizing property of the KLE. The error can be represented as follows:

||α(x, ω)− αM (x, ω)||L2(D×Ω) ≤ ||T [g(x, ω)]− T [gm(x, ω)]||L2(D×Ω) + ||T [gm(x, ω)]− E{T [gm(x, ω)]}

−
M∑

i=1

√
λmiξmi(ω)φmi(x)||L2(D×Ω) + ||E{T [gm(x, ω)]} − E[α](x) +

M∑

i=1

√
λmiξmi(ω)φmi(x)

−
M∑

i=1

√
λNGiξNGi(ω)φNGi(x)||L2(D×Ω), (14)
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where

E{T [gm(x, ω)]}+
M∑

i=1

√
λmiξmi(ω)φmi(x) (15)

is the truncated KLE ofT [gm(x, ω)]. If the nonlinear transformationT (.) is Lipschitz continuous with constantC,
one can estimate the first term as

||T [g(x, ω)]− T [gm(x, ω)]||L2(D×Ω) ≤ C||g(x, ω)− gm(x, ω)||L2(D×Ω), (16)

which converges form → ∞, becausegm(x, ω) is the truncated KLE ofg(x, ω). The second term contains the
difference ofT [gm(x, ω)] and its KLE and converges forM →∞. For the last term, one has

||E{T [gm(x, ω)]} − E[α](x) +
M∑

i=1

√
λmiξmi(ω)φmi(x)−

M∑

i=1

√
λNGiξNGi(ω)φNGi(x)||L2(D×Ω)

= ||E{T [gm(x, ω)]− α(x, ω)}+
M∑

i=1

∫

D

{T [gm(y, ω)]− E[T (gm(y, ω))]}

× [φmi(x)φmi(y)− φNGi(x)φNGi(y)] d y||L2(D×Ω) (17)

and this term will remain small, if the eigenfunctions of the operator [Eq. (7)] with the covariance function of
T [gm(x, ω)] andT [g(x, ω)] do not differ too much.

The random variablesξNGi(ω), i = 1, 2, . . . , M are neither independent nor uncorrelated.

4. SPARSE COLLOCATION SCHEME

The series representation [Eq. (12)] is inserted into Eq. (1) to yield

−∇ · {E[α](x) +
M∑

i=1

√
λNGiξNGi(ω)φNGi(x)}∇u(x, ω) = f(x) onD. (18)

It is assumed thatΓi = ξNGi(Ω) are bounded intervals inR. Denote withΓ the Cartesian productΓ =
∏M

i=1 Γi ⊂
RM . Making use of the fact thatα(x, ω) has been represented by a finite number of random variables, an auxiliary
problem is considered in the following:

−∇ · {E[α](x) +
M∑

i=1

√
λNGiyiφNGi(x)}∇u(x, y) = f(x) for (x, y) ∈ D × Γ. (19)

From the expression foru(x, y), one obtainsu(x, ω) by replacing the vectory with the vector of random variables
ξNGi(ω), i = 1, 2, . . . , M .

For the physical domain, this equation is discretized on finite-dimensional approximation spaces. ForH1
0 (D),

a family of standard FE approximation spacesXh ⊂ H1
0 (D) of continuous piecewise linear functions in a regular

triangulationTh of D with mesh parameterh is considered.
Denote withNi(x), i = 1, 2, . . . , N , a basis ofXh ⊂ H1

0 (D). The solutionu(x, y) is approximated by

u(x, y) =
N∑

i=1

ui(y)Ni(x). (20)

For a fixed valuey, the unknown coefficientsui(y), i = 1, 2, . . . , N can be computed from the solution of the FE
problem (

K(0) +
M∑

s=1

K(s)ys

)
u(y) = f , (21)
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where the matricesK(0), K(s), s = 1, 2, . . . , M and vectorf are given by

K
(0)
ij =

∫

D

E[α](x)∇Ni(x) · ∇Nj(x) d x,

K
(s)
ij =

√
λNGs

∫

D

φNGs(x)∇Ni(x) · ∇Nj(x) d x,

fi =
∫

D

f(x)Ni(x) d x, i, j = 1, 2, . . . , N

(22)

andu(y) is the vector containing the nodal displacementsui(y), i = 1, 2, . . . , N for the fixed valuey. The matrices
K(s), s = 1, 2, . . . , M can be interpreted as FE stiffness matrices with a spatial variation of Young’s modulus.

As the distribution of the random variablesξNGi(ω), i = 1, . . . , M is difficult to obtain, we seek to compute
u(y) at given nodes in the stochastic domain to which Lagrange interpolation can be applied. Samples of the random
variablesξNGi(ω), i = 1, . . . , M can then be generated and inserted into the interpolation polynomials in order to
obtain samples of the solution.

The stochastic domainΓ is partitioned into non-overlapping elementsγ =
∏M

i=1[a
γ
i , bγ

i ]. On each elementγ,
the approximation space is the span of tensor product polynomials with degree at mostq = (q1, q2, . . . , qM ). The
approximation subspacePq,k(Γ) ⊂ L2

p(Γ) comprises thus the FE space of possibly discontinuous piecewise polyno-
mials with degree at mostq and mesh parameterk = (k1, k2, . . . , kM ), with ki = maxγ⊂Γ|aγ

i − bγ
i |. If the partition

consists of a single element only and the orderq is varied, global approximations are obtained.
On each FEγ ⊂ Γ, the solution is constructed by Lagrange interpolation on a suitable set of pointsηq = {yi, i =

1, 2, . . . , mq}, whereq indicates the interpolation order. The interpolation to orderq requiresmq values. Considering
first the case of a single stochastic dimension,u(y) is approximated on each elementγ ⊂ Γ by a sequence of Lagrange
interpolation operators

Uq(u)(y) =
mq∑

j=1

u(yj)lj(y), (23)

whereu(y) must be an element ofC0[γ,H1
0 (D)]. In the multi-dimensional case, a tensor product interpolation

(Uq
1 ⊗ Uq

2 ⊗ · · · ⊗ Uq
M )(u)(y) =

mq1∑

j1=1

mq2∑

j2=1

· · ·
mqM∑

jM=1

u(ηq1
j1

,ηq2
j2

, . . . , ηqM

jM
)(lq1

j1
⊗ lq2

j2
· · · ⊗ lqM

jM
)(y), (24)

whereη
qk

jk
is thejkth point of the setηqk andlqk

jk
is thejkth Lagrange polynomial for interpolation until the orderqk

is practically not feasible. Therefore, interpolation on sparse sets of support nodes by means of Smolyak’s algorithm
[38] is introduced. With the nested interpolants∆i = U i − U i−1, the Smolyak interpolant ofu(y) is

Aq,M (u) =
∑

i∈Xq,M

(∆i1 ⊗∆i2 ⊗ · · · ⊗∆iM )(u)

= Aq−1,M (u) +
∑

|i|=q

(∆i1 ⊗∆i2 ⊗ · · · ⊗∆iM )(u)

=
∑

i∈Yq,M

(−1)q+M−|i|
(

M − 1
q + M − |i|

)
(U i1 ⊗ U i2 ⊗ · · · ⊗ U iM )(u),

(25)

where

Xq,M =



i ∈ NM

+ , i ≥ 1 :
M∑

j=1

(ij − 1) ≤ q



 ,

Yq,M =



i ∈ NM

+ , i ≥ 1 : q −M + 1 ≤
M∑

j=1

(ij − 1) ≤ q



 ,

(26)
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and|i| = i1 + i2 + · · · + iM . To compute the Smolyak interpolant, one only needs to evaluate functionu(y) on the
sparse grid ⋃

i∈Y M
q

ηi1 × ηi2 × · · · × ηiM . (27)

By mapping the elementγ ⊂ Γ on the cube[0, 1]M and choosing appropriate interpolation points, e.g., the Clenshaw-
Curtis grid points with equidistant nodes on[0, 1] [39], given by

η1 = {0.5},

ηi =
{

j − 1
mi − 1

, j = 1, 2, . . . ,mi = 2i−1 + 1
}

, i > 1;
(28)

or the extrema of Chebyshev polynomials or Gauss-Lobatto points, one obtains nested sets of interpolation points
ηi ⊂ ηi+1 and, thus, the set of evaluation points reduces further. In order to extend the interpolation by one level, it is
only necessary to evaluate the function at the grid points

⋃

|i|=q

ηi1
∆ × ηi2

∆ × · · · × ηiM

∆ , (29)

whereηi
∆ = ηi \ ηi−1.

Figure 1 displays the set of interpolation points forq = 7 andM = 3. It comprises 177 nodes.

5. LOCAL RESPONSE SURFACE

Once the algebraic problems are solved and the approximation coefficients have been determined, an expression of the
displacement field that depends on the input random variables has been obtained. This expression can be considered
as a response surface. This response surface has local character [30], and depends on the size and location of the
elementsγ, if a partition ofΓ is adopted.

The approximation error foru(x, ω) is the sum of three parts:

• The truncation error of the input random field, controlled by the expansion orderm andM .

• The FE discretization error, controlled by the mesh parameterh.
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FIG. 1: Clenshaw-Curtis grid points:M = 3, q = 7.
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• The discretization error on the stochastic domain, controlled by the mesh parameterk and the interpolation
orderq.

As can be seen, the parallelization of the solution procedure is easily possible due to the fact that:

• The approximations on each elementγ ⊂ Γ are independent.

• For each elementγ, the evaluations at the interpolation points are independent.

As a consequence, any degree of parallelization (from coarse grained to fine grained) can be applied, depending
on the number of processors at disposal.

6. RELIABILITY ASSESSMENT

Computation of approximations for the distribution ofu(x, ω) or the failure probability Eq. (4) is a complex task and
resorting to Monte Carlo simulation via the obtained expression foru(x, ω) seems to be the easiest way to accomplish
it.

For solving reliability problems, it is very helpful to consider the approximation for the displacements as a local
response surface, which leads to a functional relationship between the input random variables andu(x, ω). Due to the
relationship between the non-normal random variablesξNGi(ω) and the standard normal variables of the underlying
KLE of the normal random field, it is then possible to directly compute the MPP (i.e., the point in standard normal
space with the lowest Euclidean norm that satisfiesF{u[x, ξNG1(ω), ξNG2(ω), . . . , ξNGM (ω)]} = F0) and to
adapt the partition ofΓ at the vicinity of the corresponding values for the non-normal random variables. In this way,
the reliability problem is solved with a high degree of accuracy in an adaptive manner.

The MPP may also be useful for the evaluation of the integral in Eq. (4) by means of variance-reduced Monte Carlo
simulation (importance sampling). To this end, a sampling densityp̃(z) is introduced by shifting probability density
functionp(z) of the standard normal random variables to the previously obtained MPP, and Eq. (4) is approximated
by

PF ≈
N∑

j=1

χF0,∞{F [u(x, zj)]}p(zj)
p̃(zj)

p̃(zj), (30)

where the sampling pointszj , j = 1, 2, . . . , N are generated according tõp(z), andu(x, zj) is computed from the
approximation on the elementγ ⊂ Γ that containsy(zj).

The preceding discussion has highlighted the importance of the MPP for reliability assessment. This procedure
can be applied if the number of random variables involved in the problem is relatively small. If this is the case, the
Euclidean distance from the origin to the MPP in standard normal space can be used as a quality measure to adapt the
parameters of the numerical solution procedure, see [30]. A variant of this procedure works with a fixed ratio between
m andM .

7. EXAMPLES

The first example deals with a standard problem for stochastic FE techniques, a clamped thin square plate under
uniform in-plane tensionq, cf. [2]. The problem is depicted in Fig. 2. The product of Young’s modulus and the
thickness of the plate is assumed to be an isotropic non-normal random field with covariance function

C(x1, y1; x2, y2) = σ2 exp
(
−|x1 − x2|

lc
− |y1 − y2|

lc

)
, (31)

with standard deviationσ = 0.2, correlation lengthlc = 1, and unit mean value. The relation between non-normal
random fieldα(x, ω) and normal random fieldg(x, ω) is given byα(x, ω) = g2(x, ω). Poisson’s ratio is set to 0.3.

The plate has unit length l. A threshold value is assumed for the maximum longitudinal displacement and failure
occurs if the maximum longitudinal displacement exceeds this threshold value.
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l=1

q=1

FIG. 2: Thin square plate under uniform in-plane tension.

The non-normal random variables of the KLE of the non-normal random field have been computed according to
Eq. (13). The histograms are given in Fig. 3. The distributions of the non-normal random variables exhibit a leptokurtic
behavior.

For a maximum displacement of 1.19 and a discretization of the random fields withM = 6 andm = 3 terms, Fig. 4
displays the development of the relative errors for the failure probability when the interpolation order is increased. In
order to compare the results, the abscissa displays the number of deterministic FE runs. The exact value of the failure
probability has been estimated from importance sampling with 50,000 FE runs without recurrence to a response
surface.

In order to obtain local approximations, an interval of lengthσ has been inserted at the point corresponding to the
MPP for the first and for the first two coordinates with the largest partial derivative of the longitudinal displacement at
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FIG. 3: Histograms of the first six non-normal random variables.
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FIG. 4: Percentage relative error of the computed failure probability versus number of function evaluations obtained
with global and local approximation methods.

that point, respectively. Figure 4 compares global and local approximations with respect to function evaluations (i.e.,
deterministic FE runs), where the interpolation support nodes are the Clenshaw-Curtis grid points. For the case under
consideration, the results indicate that global approximations are more efficient than local approximations. This result
is in contrast to previous findings by the author for truncated normal random fields, cf. [30], and could be due to the
special partition of the stochastic domain or the design of the stochastic sparse grid that is applied in each element.

The second example deals with the embankment dam problem considered in [40]. It will be shown that no ad-
ditional expansion coefficients for the non-normal random field discretization are necessary. The system is depicted
in Fig. 5. It consists of an embankment dam made of heterogeneous material with trapezoidal cross section under
compression by deterministic loads (q = 30 kPa, mass density of the dam1800 kg/m3). The parameters are the same
as for Case 1 in [40]. Especially, the elastic and shear moduliE(x, z) andG(x, z) are described by non-homogeneous
lognormal random fields:

E(x, z) = mE(z) + σE
exp[Y (x, z)]−mY

σY
, G(x, z) = mG(z) + σG

exp[Y (x, z)]−mY

σY
, (32)

with mE(z) = 30− 0.5z, σE = 12.5, mG(z) = 12− 0.1z, σG = 5, mY = exp(0.5), σ2
Y = exp(2)− exp(1), and a

zero-mean, unit variance normal random fieldY (x, z) with autocorrelation function [40]

R(∆x, ∆z) = exp(−|∆x|/10) exp(−|∆z|/3). (33)

q

gravity

z

x

50m 10m 50m

18m 20m

water

FIG. 5: Sketch of the embankment dam problem.
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All coordinates are measured in meters. The physical domain is discretized into 2160 three-noded plane strain finite-
elements. Failure is assumed to occur if the Mohr-Coulomb criterion

τ ≥ c + σn tanφ (34)

is satisfied in at least one element, whereτ is the shear stress,σn the normal stress,c = 125 kPa the cohesive strength
andφ = 30 the friction angle.

As the correlation length compared to the dimensions of the embankment dam is rather small, a high number of
terms in the KLE have to be considered, cf. also [41]. The large number of random variables renders the determination
of a design point difficult.

Figure 6 depicts the development of the approximations for the failure probability with increasing number of
KLE terms. The results were obtained by direct Monte Carlo simulation. For KL-G, the Gaussian random field has
been represented by itsm term KLE and then the transformation by the exponential function has been applied. For
KL-NG, non-normally distributed random variables were generated (withm = M for the underlying normal random
variables) according to the proposed procedure. It can be seen that approximately 60 KLE coefficients are necessary in
order to approximate the reference value for the failure probability well, but that no additional expansion coefficients
are necessary in the discretization of the non-normal random field. This is certainly due to the transformation of the
standard normal random field by the exponential function. In contrast, a second-order polynomial chaos representation
of the non-normal random field would have to deal with 1891 expansion terms [41].

8. CONCLUSIONS

In this paper, a stochastic FE method for transformed normal random fields is proposed. Unlike other methods, it relies
fully on the KLE of the non-normal random field and avoids polynomial chaos representations of the non-normal field.
The proposed method necessitates the introduction of a collocation scheme for the stochastic domain. Recurrence to
sparse grid interpolation methods for this task helps to keep the computational effort small.

Although discretization of the stochastic domain by discontinuous FEs has been discussed, the example under
consideration indicates that global approximations might be a more efficient choice in terms of deterministic FE runs.
Application of discontinuous FEs could be improved by further optimizing the partition of the stochastic domain and
the selection of the interpolation nodes.

Finally, it is noted that sparse grid interpolation also could be directly applied to the normal random variables
of the KLE for the underlying normal random field. However, the application of the interpolation to the non-normal
random variables is a more direct alternative and the computation of the non-normal random variables from the normal
random variables is rather inexpensive.
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FIG. 6: Percentage relative error of the computed failure probability versus number of function evaluations obtained
with global and local approximation methods.
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