ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN 印刷: 2152-5102
ISSN オンライン: 2152-5110

巻:
巻 46, 2019 巻 45, 2018 巻 44, 2017 巻 43, 2016 巻 42, 2015 巻 41, 2014 巻 40, 2013 巻 39, 2012 巻 38, 2011 巻 37, 2010 巻 36, 2009 巻 35, 2008 巻 34, 2007 巻 33, 2006 巻 32, 2005 巻 31, 2004 巻 30, 2003 巻 29, 2002 巻 28, 2001 巻 27, 2000 巻 26, 1999 巻 25, 1998 巻 24, 1997 巻 23, 1996 巻 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2018025511
pages 383-394

STOKES FLOW OF REINER-RIVLIN FLUID PAST A DEFORMED SPHERE

Bharat Raj Jaiswal
Department of Mathematics, AKS University, Satna 485001, M.P., India

要約

In this work, an analytic investigation of steady axisymmetric creeping flow of a Reiner-Rivlin fluid past an approximate spheroid whose shape varies slightly from the shape of a sphere is considered and carried out. The condition of impenetrability and no-slip conditions on the spheroidal surface SD are used as boundary conditions to the first order of small parameter ε characterizing the deformation. On the basis of Stokesian assumption, a general solution is modeled in the spherical coordinate systems (R, θ, φ) in the infinite expanse of a non-Newtonian Reiner-Rivlin liquid. In the limiting cases, previous well-known results are deduced and the results found are in good agreement with the available literature. As a special case, we have obtained the expressions of pressure and drag force on solid sphere. Also, the variation of the drag force and pressure with respect to the fluid parameters are studied and depicted graphically.

参考

  1. Acrivos, A. and Taylor, T.D., The Stokes' Flow past an Arbitrary Particle: The Slightly Deformed Sphere, Chem. Eng. Sci., vol. 19, no. 7, pp. 445-451,1964.

  2. Aero, E.L., Bulygin, A.N., and Kuvshinskii, E.V., Asymmetric Hydromechanics, J. Appl. Math. Mech, vol. 29, no. 2, pp. 333-346, 1965.

  3. Brenner, H., The Stokes' Resistance of a Slightly Deformed Sphere, Chem. Eng. Sci., vol. 19, no. 8, pp. 519-539, 1964.

  4. Dassios, G., Hadjinicolaou, M., and Payatakes, A.C., Generalized Eigen Function and Complete Semi Separable Solutions for Stokes' Flow in Spheroidal Coordinates, Q. Appl. Math, vol. 52, no. 1, pp. 157-191, 1994.

  5. Hadamard, J.S., The Translational Motion of a Fluid Sphere in a Fluid Medium, Compt. Rend. Acad. Sci., vol. 152, pp. 1735-1738, 1911.

  6. Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics, London: Prentice Hall, 1965.

  7. Happel, J. and Brenner, H., Low Reynolds Number Hydrodynamics, The Hague, the Netherlands: Martinus Nijoff, 1983.

  8. Iyengar, T.K.V. and Shrinivasacharya, D., Stokes' Flow of an Incompressible Micropolar Fluid past an Approximate Sphere, Int. J. Eng. Sci., vol. 31, no. 1, pp. 115-123, 1993.

  9. Jain, M.K., Boundary Layer Effects in Non-Newtonian Fluids, J. Appl. Math. Mech, vol. 35, nos. 1-2, pp. 12-16, 1955.

  10. Jaiswal, B.R. and Gupta, B.R., Wall Effects on Reiner-Rivlin Liquid Spheroid, Appl. Comput. Mech, vol. 8, no. 2, pp. 157-176, 2014.

  11. Jaiswal, B.R. and Gupta, B.R., Stokes' Slow of Micropolar Fluid past a Non-Newtonian Liquid Spheroid, Int. J. Fluid Mech. Res., vol. 42, no. 2, pp. 170-189, 2015.

  12. Prasad, M.K. and Kaur, M., Stokes' Flow of Viscous Fluid past a Micropolar Fluid Spheroid, Adv. Appl. Math. Mech., vol. 9, no. 5, pp. 1076-1093,2017.

  13. Oberbeck, A., About Stationary Fluid Movements with Consideration of Internal Friction, J. Pure Appl. Math., vol. 1876, no. 81, pp. 62-80,1876.

  14. Palaniappan, D., Creeping Flow about a Slightly Deformed Sphere, J. Appl. Math. Phys., vol. 45, no. 5, pp. 61-66, 1994.

  15. Payne, L.E. and Pell, W.H., The Stokes' Flow Problem for a Class of Axially Symmetric Bodies, J. Fluid Mech., vol. 7, no. 4, pp. 529-549, 1960.

  16. Ramkissoon, H., Stokes' Flow past a Slightly Deformed Fluid Sphere, J Appl. Math. Phys., vol. 37, no. 6, pp. 859-866, 1986.

  17. Ramkissoon, H., Slow Flow of a Non-Newtonian Liquid past a Fluid Sphere, Acta Mech, vol. 78,nos. 1-2, pp. 73-80, 1989.

  18. Ramkissoon, H., Visco-Elastic Flow past a Spheroid, J. Appl. Math. Phys., vol. 41, no. 1, pp. 137-145, 1990.

  19. Ramkissoon, H., Slip Flow past an Approximate Spheroid, Acta Mech, vol. 123, nos. 1-4, pp. 227-233, 1997a.

  20. Ramkissoon, H., Polar Flow past a Spheroid, Eng. Trans., vol. 45, pp. 171-180, 1997b.

  21. Ramkissoon, H., Stokes' Flow past a Non-Newtonian Fluid Spheroid, J. Appl. Math. Mech, vol. 78, no. 1, pp. 61-66, 1998.

  22. Ramkissoon, H. and Majumadar, S.R., Micropolar Fluid past a Slightly Deformed Fluid Sphere, J. Appl. Math. Mech., vol. 68, no. 3, pp. 155-160,1988.

  23. Ramkissoon, H. and Rahaman, K., Non-Newtonian Fluid Sphere in a Spherical Container, Acta Mech., vol. 149, nos. 1-4, pp. 239-245,2001.

  24. Rao, S.K.L. and Rao, P.B., Slow Stationary Flow of a Micropolar Fluid past a Sphere, J. Eng. Math., vol. 4, no. 3, pp. 207-217, 1970.

  25. Rathna, S.L., Slow Motion of a Non-Newtonian Liquid past a Sphere, Q. J. Mech. Appl. Math, vol. 15, no. 4, pp. 427-434, 1962.

  26. Reiner, M., A Mathematical Theory of Dilatancy, Am. J. Math, vol. 67, pp. 350-362, 1945.

  27. Rybczynski, W., The Translational Motion of a Fluid Sphere in a Fluid Medium, Bull. Acad. Sci. Cracovie A, vol. 40, pp. 40-46, 1911.

  28. Sampson, R.A., On Stokes' Current Function, Philos. Trans. R. Soc. A, vol. 182, pp. 449-518,1891.

  29. Sharma, H.G., Creeping Motion of Non-Newtonian Fluid past a Sphere, Int. J. Pure Appl. Math., vol. 10, no. 12, pp. 1565-1575, 1979.

  30. Srivastava, D.K., Yadav, R.R., and Yadav, S., Steady Stokes' Flow around Deformed Sphere: Class of Oblate Bodies, Int. J. Appl. Math. Mech, vol. 8, no. 9, pp. 17-53,2012.

  31. Srivastava, D.K., Yadav, R.R., and Yadav, S., Steady Oseen's Flow past a Deformed Sphere: An Analytical Approach, J. Theor. Appl. Mech, vol. 51, no. 3, pp. 661-673,2013.

  32. Stokes, G.G., On the Effects of Internal Friction of Fluids on Pendulums, Trans. Cambridge Philos. Soc., vol. 9, pp. 8-106, 1851.

  33. Stokes, V.K., Effects of Couple Stresses in Fluids on the Creeping Flow past a Sphere, Phys. Fluids, vol. 14, no. 7, pp. 1580-1582, 1971.

  34. Yadav, P.K., Tiwari, A., and Singh, P., Hydrodynamic Permeability of a Membrane Built up by Spheroidal Particles Covered by Porous Layer, Acta Mech, vol. 229, no. 4, pp. 1869-1892,2018.


Articles with similar content:

NANOPARTICLE FRACTION IN AN ANNULUS IN THE JEFFREY FLUID MODEL
Heat Transfer Research, Vol.47, 2016, issue 8
Sohail Nadeem, Noreen Sher Akbar
Stokes Flow of Micropolar Fluid Past a Non-Newtonian Liquid Spheroid
International Journal of Fluid Mechanics Research, Vol.42, 2015, issue 2
Bali Ram Gupta, Bharat Raj Jaiswal
STOKES FLOW OVER A NON-NEWTONIAN ENCAPSULATED DROP OF ANOTHER LIQUID: EFFECT OF STRESS JUMP
Journal of Porous Media, Vol.20, 2017, issue 9
Bali Ram Gupta, Bharat Raj Jaiswal
DRAG ON A FLUID SPHERE EMBEDDED IN A POROUS MEDIUM WITH SOLID CORE
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 3
Pankaj Shukla, Krishnan Ramalakshmi
ANALYSIS OF MHD FLUID FLOW AND HEAT TRANSFER THROUGH ANNULAR SECTOR DUCTS FILLED WITH DARCY-BRINKMAN POROUS MEDIA
Heat Transfer Research, Vol.49, 2018, issue 18
Mazhar Iqbal, Farhan Ahmed