ライブラリ登録: Guest
International Journal of Fluid Mechanics Research

年間 6 号発行

ISSN 印刷: 2152-5102

ISSN オンライン: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Aerodynamics of a Bee Wing, Operating in a Fanning Mode

巻 28, 発行 4, 2001, 4 pages
DOI: 10.1615/InterJFluidMechRes.v28.i4.100
Get accessGet access

要約

A two dimensional non-linear computation model of a bee wing operation, when fanning a hive, is constructed on the basis of the improved method of discrete vortices and the kinematic data, obtained by the high-speed filming. The cases of a single bee, of a bee on a landing platform, and of a separated chain of bees are considered. The instantaneous integral characteristics and the average dynamical characteristics of wing, the vortex patterns, the velocity fields, the equivelocity contours, the equipressure contours and the instantaneous streamlines are obtained. The stream functions, required for calculation of the instantaneous streamlines, both of the flow in the channel, induced by a vortex, and of the flow, induced by an isolated vortex chain, are obtained analytically. Numerical simulation shows that a circulating flow, catching air from the hive, is formed at any flapping half-plane. A comparative analysis of the obtained results gives grounds to conclude that the insect's wing operation in a fanning mode, similarly to the flight mode, is based on the inertial-vortical principle.

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain