ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.9

ISSN 印刷: 2152-5102
ISSN オンライン: 2152-5110

巻:
巻 47, 2020 巻 46, 2019 巻 45, 2018 巻 44, 2017 巻 43, 2016 巻 42, 2015 巻 41, 2014 巻 40, 2013 巻 39, 2012 巻 38, 2011 巻 37, 2010 巻 36, 2009 巻 35, 2008 巻 34, 2007 巻 33, 2006 巻 32, 2005 巻 31, 2004 巻 30, 2003 巻 29, 2002 巻 28, 2001 巻 27, 2000 巻 26, 1999 巻 25, 1998 巻 24, 1997 巻 23, 1996 巻 22, 1995

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.2018025734
pages 565-578

ON THE V2-BASED TURBULENCE MODEL FOR FREE-STREAM AND WALL-BOUNDED HIGH-SPEED COMPRESSIBLE FLOWS

Alexander M. Molchanov
Aerospace Heating Engineering Department,Moscow Aviation Institute (National Research University) "MAI", Volokolamskoe shosse, d. 4, 125993, Moscow, Russia
Dmitry S. Yanyshev
Aerospace Heating Engineering Department,Moscow Aviation Institute (National Research University) "MAI", Volokolamskoe shosse, d. 4, 125993, Moscow, Russia
Leonid V. Bykov
Aerospace Heating Engineering Department, Moscow Aviation Institute (National Research University) "MAI", Volokolamskoe shosse, d. 4, 125993, Moscow, Russia
Ivan M. Platonov
Aerospace Heating Engineering Department,Moscow Aviation Institute (National Research University) "MAI", Volokolamskoe shosse, d. 4, 125993, Moscow, Russia

要約

A turbulence model for free-stream and wall-bounded high-speed compressible flows is presented. The core of the model is based on the assumption that the key role in turbulent mixing processes is played by velocity fluctuations normal to streamlines. Thus a separate partial differential equation is solved to model this parameter correctly. Effect of compressibility is handled via modeling the rapid part of pressure-strain correlation depending on turbulent Mach number. To model turbulence in the near-wall region, a blending technique is used (similar to the one introduced in Menter's SST model). The developed model is verified in free-stream and wall-bounded conditions. Comparison of the simulation with available experimental data showed a good agreement for the above problems.

参考

  1. Bertsch, R., Rapidly Sheared Compressible Turbulence: Characterization of Different Pressure Regimes and Effect of Thermodynamic Fluctuations, MS, Texas A&M University, Texas, USA, 2010.

  2. Blaisdell, G.A., Mansour, N.N., and Reynolds, W.C., Compressibility Effects on the Growth and Structure of Homogeneous Turbulent Shear-Flow, J. FluidMech., vol. 256, pp. 443-485,1993.

  3. Durbin, P.A., Near-Wall Turbulence Closure Modeling without Damping Functions, Theor. Comput. Fluid Dyn., vol. 3, no. 1, pp. 1-13,1991.

  4. Dutton, J.C. and Addy, A.L., Fluid Dynamic Mechanisms and Interactions within Separated Flows, U.S. Army Research Office Research Grant DAAH04-93-G-0226, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana-Champagne, Urbana, IL, 1998.

  5. Fernholz, H.H. and Finley, P. J., A Critical Compilation of Compressible Turbulent Boundary Layer Data, no. 223, Neuilly-sur-Seine, France: AGARD, 1977.

  6. Freund, J.B., Lele, S.K., and Moin, P., Compressibility Effects in a Turbulent Annular Mixing Layer, Part 1, Turbulence and Growth Rate, J. Fluid Mech, vol. 421, pp. 229-267,2000.

  7. Glebov, G.A. and Molchanov, A.M., Model of Turbulence for Supersonic Reacting Jets, Investigation of Heat Transfer in Flying Vehicles (Issledovanie Teploobmena v Letatelnykh Apparatakh), Moscow, Russia: Moscow Aviation Institute, pp. 6-11,1982.

  8. Goebel, S.G. and Dutton, J.C., Experimental Study of Compressible Turbulent Mixing Layers, AIAAJ., vol. 29, no. 4, pp. 538-546, 1991.

  9. Gomez, C.A. and Girimaji, S.S., Algebraic Reynolds Stress Model (ARSM) for Compressible Shear Flows, AIAA Paper 2011-3572, p. 14,2011.

  10. Hossain, M.S., Mathematische Modellierung von Turbulenten Auftriebstromungen, PhD, University of Karlsruhe, Karlsruhe, Germany, 1980.

  11. Huang, S. and Fu, S., Modelling of Pressure-Strain Correlation in Compressible Turbulent Flow, Acta Mech. Sin, vol. 24, pp. 37-43,2008.

  12. Jones, R.M., Advanced Turbulence Modeling for Industrial Flows, PhD, Louisiana State University, Louisiana, USA, 1996.

  13. Kalitzin, G., Gould, A.R.B., and Benton, J.J., Application of Two-Equation Turbulence Models in Aircraft Design, AIAA Paper 96-0327, p. 14,1994.

  14. Kline, S.J., Cantwell, B.J., and Lilley, G.M., Eds., 1980-1981 AFOSR-HTTM-Stanford Conference on Complex Turbulent Flows, Stanford, CA: Stanford University Press, 1981.

  15. Kollmann, W., Ed., Prediction Methods for Turbulent Flows, Washington, DC: Hemisphere Publishing Corporation, 1980.

  16. Kraev, V.M. and Yanyshev, D.S., Unsteady Turbulent Flows in Channels of Powerplants, Krasnoyarsk, Russia: Siberian State Aerospace University, 2014.

  17. Krasotkin, VS., Myshanov, A.I., Shalaev, S.P., Shirokov, N.N., and Yudelovich, M.Y., Investigation of Supersonic Isobaric Submerged Turbulent Jets, FluidDyn., vol. 23, no. 4, pp. 529-534,1988.

  18. Lau, J.C., Morris, P. J., and Fisher, M.J., Measurements in Subsonic and Supersonic Free Jets Using a Laser Velocimeter, J. Fluid Mech., vol. 63, no. 1, pp. 1-27,1979.

  19. Lavin, T.A., Reynolds and Favre-Averaged Rapid Distortion Theory for Compressible, Ideal-Gas Turbulence, MS, Texas A&M University, Texas, USA, 2007.

  20. Ljuboja, M. and Rodi, W., Calculation of Turbulent Wall Jets with an Algebric Reynolds Stress Model, J. Fluid Eng., vol. 102, pp. 350-356,1980.

  21. Manceau, R. and Hanjalic, K., Elliptic Blending Model: A New Near-Wall Reynolds-Stress Turbulence Closure, Phys. Fluids, vol. 14, no. 2, pp. 744-754,2002.

  22. Mathur, T. and Dutton, J.C., Base-Bleed Experiments with a Cylindrical Afterbody in Supersonic Flow, J. Spacecraft Rockets, vol. 33, no. 1,pp. 30-37,1996.

  23. Menter, F.R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA J, vol. 32, no. 8, pp. 1598-1605,1994.

  24. Molchanov, A.M., A Calculation of Supersonic Non-Isobaric Jets with Compressibility Corrections in a Turbulence Model, Vestnik MAI, vol. 16, no. 1, pp. 38-48,2009.

  25. Molchanov, A.M. and Bykov, L.V., Three-Equation K-e-Vn Turbulence Model for High-Speed Flows, AIAA Paper 2013-3181, p. 30,2013.

  26. Pantano, C. and Sarkar, S., a Study of Compressibility Effects in the High Speed Turbulent Shear Layer Using Direct Simulation, J. Fluid Mech, vol. 451, pp. 329-371,2002.

  27. Papamoschou, D. and Roshko, A., The Compressible Turbulent Shear Layer: An Experimental Study, J. Fluid Mech., vol. 197, pp. 453-477,1988.

  28. Sarkar, S., The Stabilizing Effect of Compressibility in Turbulent Shear Flow, J. Fluid Mech., vol. 282, pp. 163-186,1995.

  29. Sarkar, S., Erlebacher, G., and Hussaini, M.Y., Compressible Homogeneous Shear: Simulation and Modeling, NASA Contractor Report 189611 92-6,ICASE, 1992.

  30. Sarkar, S., Erlebacher, G., Hussaini, M.Y., and Kreiss, H.O., The Analysis and Modeling of Dilatational Terms in Compressible Turbulence, U.S. Army Research Office Research Grant Report No. ICASE-89-79, NAS 1.26:181959, NASA-CR-181959, NASA Langley Research Center, 1989.

  31. Simone, A., Coleman, G., and Cambon, C., The Effect of Compressibility on Turbulent Shear Flow: A Rapid-Distortion-Theory and Direct Numerical-Simulation, J. Fluid Mech, vol. 330, pp. 307-338,1997.

  32. Vreman, A.W., Sandham, N.D., and Luo, K.H., Compressible Mixing Layer Growth Rate and Turbulence Characteristics, J. Fluid Mech, vol. 320, pp. 235-258,1996.

  33. Zeman, O., Dilatation Dissipation: The Concept and Application in Modeling Compressible Mixing Layer, Phys. Fluids A, vol. 2, pp. 178-188,1990.


Articles with similar content:

LES scrutiny of non-linear k-ε-ζ-f model sensitized to rotation
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
E. Properzi, A. Salvagni, K. Hanjalic, F. Rispoli, Domenico Borello
The Level-3 Mesoscale Turbulence Model for Air Circulation and Pollutant Dispersion in Cities
ICHMT DIGITAL LIBRARY ONLINE, Vol.10, 2006, issue
Lioudmila Kurbatskaya, Albert F. Kurbatskii, A. Lonchakov
Effectiveness of turbulence models based on elliptic relaxation approach
ICHMT DIGITAL LIBRARY ONLINE, Vol.10, 2006, issue
Branislav Basara
A stochastic extension of the Approximate Deconvolution Model
TSFP DIGITAL LIBRARY ONLINE, Vol.7, 2011, issue
Nikolaus A. Adams
Subgrid-Scale Modeling of Decaying Compressible MHD Turbulence in Heat-Conducting Fluid
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
K. V. Karelsky, A. A. Chernyshov, A. S. Petrosyan