ライブラリ登録: Guest
International Journal of Fluid Mechanics Research

年間 6 号発行

ISSN 印刷: 2152-5102

ISSN オンライン: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Numerical Modelling of Transient Mass Transfer in an Aquifer With Simultaneous First Order Chemical Reaction and Second Order Decay

巻 35, 発行 2, 2008, pp. 104-129
DOI: 10.1615/InterJFluidMechRes.v35.i2.20
Get accessGet access

要約

A mathematical model to simulate contaminant dispersion in a homogeneous, isotropic aquifer under the influence of second order decay as well as first order chemical reaction at the boundary is presented. A finite difference implicit (ADI) scheme has been employed to solve the two-dimensional transport equation. Numerical experiments were carried out for two types of disposal scheme, i) Scenario-I: longer duration with low concentration and ii) Scenario-II: short duration with high concentration. In both the scenarios, contaminant inflow rate is considered to be proportionately analogous to the inflow concentration and therefore two types of input correspond to the same amount of waste load. The influence of reaction parameter (β) and decay parameter (μ) on the contaminant dispersion have been studied for two years, four years and six years of simulations. The reaction at the upper boundary behaves as a catalytic reaction, causing depletion of contaminant plume and its growth. With the increase of reaction parameter (β), spreading of contaminant is controlled very significantly. The decay parameter (μ) takes a significant role to reduce the plume size when long time is allowed. Model simulations indicate that when the boundary reaction is mild and decay is insignificant, scenario-I can be chosen for a short period after release. If strong treatment is subjected for a long time, scenario-II is a better option as it controls the contaminant spread significantly.

によって引用された
  1. Bég O. Anwar, Hameed M., Bég Tasveer A., Chebyshev Spectral Collocation Simulation of Nonlinear Boundary Value Problems in Electrohydrodynamics, International Journal for Computational Methods in Engineering Science and Mechanics, 14, 2, 2013. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain