ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Critical Reviews™ in Eukaryotic Gene Expression
インパクトファクター: 1.841 5年インパクトファクター: 1.927 SJR: 0.649 SNIP: 0.516 CiteScore™: 1.96

ISSN 印刷: 1045-4403
ISSN オンライン: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.2014011828
pages 287-309

Pyridine Nucleotides in Regulation of Cell Death and Survival by Redox and Non-Redox Reactions

Renata Novak Kujundzic
Laboratory for Epigenomics, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
Neven Zarkovic
Laboratory for Oxidative Stress, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
Koraljka Gall Troselj
Laboratory for Epigenomics, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia

要約

Changes of the level and ratios of pyridine nucleotides determine metabolism- dependent cellular redox status and the activity of poly(ADP-ribose) polymerases (PARPs) and sirtuins, thereby influencing several processes closely related to cell survival and death. Pyridine nucleotides participate in numerous metabolic reactions whereby their net cellular level remains constant, but the ratios of NAD+/NADP+ and NADH/NADPH oscillate according to metabolic changes in response to diverse stress signals. In non-redox reactions, NAD+ is degraded and quickly, afterward, resynthesized in the NAD+ salvage pathway, unless overwhelming activation of PARP-1 consumes NAD+ to the point of no return, when the cell can no longer generate enough ATP to accommodate NAD+ resynthesis. The activity of PARP-1 is mandatory for the onset of cytoprotective autophagy on sublethal stress signals. It has become increasingly clear that redox status, largely influenced by the metabolism-dependent composition of the pyridine nucleotides pool, plays an important role in the synthesis of pro-apoptotic and anti-apoptotic sphingolipids. Awareness of the involvement of the prosurvival sphingolipid, sphingosine-1-phosphate, in transition from inflammation to malignant transformation has recently emerged. Here, the participation of pyridine nucleotides in redox and non-redox reactions, sphingolipid metabolism, and their role in cell fate decisions is reviewed.


Articles with similar content:

SLE-Associated Defects Promote Altered T Cell Function
Critical Reviews™ in Immunology, Vol.37, 2017, issue 1
Abel Suárez-Fueyo, Christian M. Hedrich, George C. Tsokos, Denis Comte, Jose C. Crispin
Histone Deacetylases and Mechanisms of Regulation of Gene Expression
Critical Reviews™ in Oncogenesis, Vol.20, 2015, issue 1-2
Hong Ping Chen, Ting C. Zhao, Yu Tina Zhao
Metabolic Factors that Contribute to Lupus Pathogenesis
Critical Reviews™ in Immunology, Vol.36, 2016, issue 1
Ramya Sivakumar, Laurence Morel, Anton A. Titov, Wei Li, Seung-Chul Choi
Function of Histone Deacetylase Inhibitors in Inflammation
Critical Reviews™ in Immunology, Vol.31, 2011, issue 3
Paul P. Tak, Kris A. Reedquist, Aleksander M. Grabiec
Antitumoral Activity of Sorafenib in Hepatocellular Carcinoma: Effects on Cell Survival and Death Pathways, Cell Metabolism Reprogramming, and Nitrosative and Oxidative Stress
Critical Reviews™ in Oncogenesis, Vol.21, 2016, issue 5-6
Francisco J. Padillo, Jordi Muntané, Maria A. Rodriguez-Hernandez, Elena Navarro-Villaran, Raul Gonzalez, Francisco J. Molina-Ruiz