ライブラリ登録: Guest
Critical Reviews™ in Eukaryotic Gene Expression

年間 6 号発行

ISSN 印刷: 1045-4403

ISSN オンライン: 2162-6502

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.6 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.2 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00058 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.345 SNIP: 0.46 CiteScore™:: 2.5 H-Index: 67

Indexed in

HSV-1 Infection: Role of Viral Proteins and Cellular Receptors

巻 29, 発行 5, 2019, pp. 461-469
DOI: 10.1615/CritRevEukaryotGeneExpr.2019025561
Get accessGet access

要約

The interaction between herpes simplex virus type 1 (HSV-1) and its host starts with the attachment of the virus for entry and spreading into host cells involving viral glycoproteins and host receptors. Once entered, it remains persistent as a latent infection throughout the host's life as it cannot be cleared completely by the immune system. Viral regulatory proteins and host factors determine whether the virus will enter into the acute or latent mode of infection. Acute viral infection is usually asymptomatic and self-limiting whereas latent infection may remain in the trigeminal ganglion of oropharyngeal mucosa, where it can be activated at any time depending upon the stimulus. Host innate and adaptive immune elements play important roles in limiting HSV-1 infection by interfering with viral replication but are unable to remove the virus completely. In this review, we update how the major proteins involved in entry and pathogenesis of viruses and immune responses against infection.

参考
  1. Smith JS, Robinson NJ. Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infectious Diseases. 2002;186(Suppl 1):S3-28.

  2. Zwaagstra JC, Ghiasi H, Nesburn AB, Wechsler SL. Identification of a major regulatory sequence in the latency associated transcript (LAT) promoter of herpes simplex virus type 1 (HSV-1). Virology. 1991;182(1):287-97.

  3. Perng GC, Jones C. Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdisc Perspect Infect Dis. 2010;2010:262415.

  4. Chouljenko DV, Kim I-J, Chouljenko VN, Subramanian R, Walker JD, Kousoulas KG. Functional hierarchy of herpes simplex virus 1 viral glycoproteins in cytoplasmic virion envelopment and egress. J Virol. 2012;86(8):4262-70.

  5. Preston CM. Repression of viral transcription during herpes simplex virus latency. J General Virol. 2000;81(1):1-19.

  6. Wysocka J, Herr W. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci. 2003;28(6):294-304.

  7. Spear PG. Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol. 2004;6(5):401-10.

  8. Herold BC, Spear PG. Neomycin inhibits glycoprotein C (gC)-dependent binding of herpes simplex virus type 1 to cells and also inhibits postbinding events in entry. Virology. 1994;203(1):166-71.

  9. Subramanian RP, Geraghty RJ. Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and B. Proc Natl Acad Sci USA. 2007;104(8):2903-8.

  10. Eisenberg RJ, Atanasiu D, Cairns TM, Gallagher JR, Krummenacher C, Cohen GH. Herpes virus fusion and entry: a story with many characters. Viruses. 2012;4(5):800-32.

  11. Tiwari V, O'Donnell C, Copeland RJ, Scarlett T, Liu J, Shukla D. Soluble 3-O-sulfated heparan sulfate can trigger herpes simplex virus type 1 entry into resistant Chinese hamster ovary (CHO-K1) cells. J General Virol. 2007;88(4):1075-9.

  12. O'Donnell CD, Kovacs M, Akhtar J, Valyi-Nagy T, Shukla D. Expanding the role of 3-O sulfated heparan sulfate in herpes simplex virus type-1 entry. Virology. 2010;397(2):389-98.

  13. Cai W, Gu B, Person S. Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. J Virol. 1988;62(8):2596-604.

  14. Atanasiu D, Whitbeck JC, de Leon MP, Lou H, Hannah BP, Cohen GH, Eisenberg RJ. Bimolecular complementation defines functional regions of herpes simplex virus gB that are involved with gH/gL as a necessary step leading to cell fusion. J Virol. 2010;84(8):3825-34.

  15. Arii J, Uema M, Morimoto T, Sagara H, Akashi H, Ono E, Arase H, Kawaguchi Y. Entry of herpes simplex virus 1 and other alphaherpesviruses via the paired immunoglobulin-like type 2 receptor a. J Virol. 2009;83(9):4520-7.

  16. Suenaga T, Satoh T, Somboonthum P, Kawaguchi Y, Mori Y, Arase H. Myelin-associated glycoprotein mediates membrane fusion and entry of neurotropic herpesviruses. Proc Natl Acad Sci USA. 2010;107(2):866-71.

  17. Arii J, Goto H, Suenaga T, Oyama M, Kozuka-Hata H, Imai T, Minowa A, Akashi H, Arase H, Kawaoka Y, Kawaguchi Y. Non-muscle myosin IIA is a functional entry receptor for herpes simplex virus-1. Nature. 2010;467(7317):859-62.

  18. Whitley RJ, Roizman B. Herpes simplex viruses. In: Clinical virology. 3rd ed. American Society of Microbiology; 2009. p. 409-436.

  19. Xu X, Che Y, Li Q. HSV-1 tegument protein and the development of its genome editing technology. Virol J. 2016;13(1):108.

  20. Fraser N, Spivack J, Wroblewska Z, Block T, Deshmane S, Valyi-Nagy T, Natarajan R, Gesser RM. A review of the molecular mechanism of HSV-1 latency. Curr Eye Res. 2009;10(1991):1-13.

  21. Ward SA, Weller SK. HSV-1 DNA replication. In: Weller SK, editor. Alphaherpesviruses: molecular virology; 2011. p. 89-112.

  22. Morrison LA, Knipe DM. Immunization with replication-defective mutants of herpes simplex virus type 1: sites of immune intervention in pathogenesis of challenge virus infection. J Virol. 1994;68(2):689-96.

  23. Margolis TP, Elfman FL, Leib D, Pakpour N, Apakupakul K, Imai Y, Voytek C. Spontaneous reactivation of herpes simplex virus type 1 in latently infected murine sensory ganglia. J Virol. 2007;81(20):11069-74.

  24. Scott D, Coulter W, Lamey PJ. Oral shedding of herpes simplex virus type 1: a review. J Oral Pathol Med. 1997;26(10):441-7.

  25. Millhouso S, Wigdahl B. Molecular circuitry regulating herpes simplex virus type 1 latency in neurons. J Neurovirol. 2000;6(1):6-24.

  26. Riley LE, editor. Herpes simplex virus. Seminars in perinatology. Elsevier; 1998.

  27. Wood JN, Lillycrop K, Dent C, Ninkina NN, Beech MM, Willoughby J, Winter J, Latchman DS. Regulation of expression of the neuronal POU protein Oct-2 by nerve growth factor. J Bio Chem. 1992;267(25):17787-91.

  28. Hobbs MR, Jones BB, Otterud BE, Leppert M, Kriesel JD. Identification of a herpes simplex labialis susceptibility region on human chromosome 21. J Infect Dis. 2008;197(3):340-6.

  29. Thompson RL, Sawtell N. The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol. 1997;71(7):5432-40.

  30. Wimmer P, Schreiner S, Dobner T. Human pathogens and the host cell SUMOylation system. J Virol. 2012;86(2):642-54.

  31. Chen Y, Carrington-Lawrence SD, Bai P, Weller SK. Mutations in the putative zinc-binding motif of UL52 demonstrate a complex interdependence between the UL5 and UL52 subunits of the human herpes simplex virus type 1 helicase/primase complex. J Virol. 2005;79(14): 9088-96.

  32. Cavanaugh NA, Kuchta RD. Initiation of new DNA strands by the herpes simplex virus-1 primase-helicase complex and either herpes DNA polymerase or human DNA polymerase a. J Bio Chem. 2009;284(3):1523-32.

  33. Zheng Y, Gu H. Identification of three redundant segments responsible for herpes simplex virus 1 ICP0 to fuse with ND10 nuclear bodies. J Virol. 2015;89(8): 4214-26.

  34. Hay RT. SUMO: a history of modification. Mol Cell. 2005;18(1):1-12.

  35. Kawaguchi Y, Tanaka M, Yokoymama A, Matsuda G, Kato K, Kagawa H, Hirai K, Roizman B. Herpes simplex virus 1 a regulatory protein ICP0 functionally interacts with cellular transcription factor BMAL1. Proc Natl Acad Sci USA. 2001;98(4):1877-82.

  36. Glossop NR, Hardin PE. Central and peripheral circadian oscillator mechanisms in flies and mammals. J Cell Sci. 2002;115(17):3369-77.

  37. Boutell C, Canning M, Orr A, Everett RD. Reciprocal activities between herpes simplex virus type 1 regulatory protein ICP0, a ubiquitin E3 ligase, and ubiquitin-specific protease USP7. J Virol. 2005;79(19):12342-54.

  38. Pfoh R, Lacdao IK, Georges AA, Capar A, Zheng H, Frappier L, Saridakis V. Crystal structure of USP7 ubiquitin-like domains with an ICP0 peptide reveals a novel mechanism used by viral and cellular proteins to target USP7. PLoS Pathog. 2015;11(6):e1004950.

  39. Pozhidaeva AK, Mohni KN, Dhe-Paganon S, Arrowsmith CH, Weller SK, Korzhnev DM, Bezsonova I. Structural characterization of interaction between human ubiquitin-specific protease 7 and immediate-early protein ICP0 of herpes simplex virus-1. J Bio Chem. 2015;290(38):22907-18.

  40. Finnen RL, Hay TJ, Dauber B, Smiley JR, Banfield BW. The herpes simplex virus 2 virion-associated ribonuclease VHS interferes with stress granule formation. J Virol. 2014;88(21):12727-39.

によって引用された
  1. Sicurella Mariaconcetta, Sguizzato Maddalena, Cortesi Rita, Huang Nicolas, Simelière Fanny, Montesi Leda, Marconi Peggy, Esposito Elisabetta, Mangiferin-Loaded Smart Gels for HSV-1 Treatment, Pharmaceutics, 13, 9, 2021. Crossref

  2. Gui Xixi, Zhang Wuchao, Gao Peng, Zhang Yongning, Zhou Lei, Ge Xinna, Guo Xin, Wills John W., Han Jun, Yang Hanchun, Jones Clinton J., Discovery and Characterization of an Aberrant Small Form of Glycoprotein I of Herpes Simplex Virus Type I in Cell Culture, Microbiology Spectrum, 10, 2, 2022. Crossref

  3. Goswami Ria, Pavon Carolina Garrido, Miller Itzayana G., Berendam Stella J., Williams Caitlin A., Rosenthal Danielle, Gross Mackensie, Phan Caroline, Byrd Alliyah, Pollara Justin, Permar Sallie R., Fouda Genevieve G., Prenatal Immunization to Prevent Viral Disease Outcomes During Pregnancy and Early Life, Frontiers in Virology, 2, 2022. Crossref

  4. Yu Pei‐Lun, Cao San‐Jie, Wu Rui, Zhao Qin, Yan Qi‐Gui, Regulatory effect of m 6 A modification on different viruses , Journal of Medical Virology, 93, 11, 2021. Crossref

  5. Miranda Milene D., Chaves Otávio Augusto, Rosa Alice S., Azevedo Alexandre R., Pinheiro Luiz Carlos da Silva, Soares Vinicius C., Dias Suelen S. G., Abrantes Juliana L., Bernardino Alice Maria R., Paixão Izabel C. P., Souza Thiago Moreno L., Fontes Carlos Frederico L., The Role of Pyrazolopyridine Derivatives on Different Steps of Herpes Simplex Virus Type-1 In Vitro Replicative Cycle, International Journal of Molecular Sciences, 23, 15, 2022. Crossref

  6. Feng Zhuoying, Zhou Fanghang, Tan Miaomiao, Wang Tingting, Chen Ying, Xu Wenwen, Li Bin, Wang Xin, Deng Xin, He Ming-Liang, Targeting m6A modification inhibits herpes virus 1 infection, Genes & Diseases, 9, 4, 2022. Crossref

  7. Cao Kang, Zhang Yan, Yao Qian, Peng Yanjuan, Pan Qu, Jiao Qiuxia, Ren Ke, Sun Fenghui, Zhang Qian, Guo Ran, Zhang Jiali, Chen Tian, Hypericin blocks the function of HSV-1 alkaline nuclease and suppresses viral replication, Journal of Ethnopharmacology, 296, 2022. Crossref

近刊の記事

PRMT6 promotes the immune evasion of gastric cancer via upregulating ANXA1 Liang Xu, Fenger Zhang, Binqi Yu, Shengnan Jia, Sunfu Fan PURPL promotes M2 macrophage polarization in lung cancer via regulating RBM4/xCT signaling Jipeng Guo, Chongwen Gong, Hao Wang SIAH1 promotes the pyroptosis of cardiomyocytes in diabetic cardiomyopathy via regulating IκB-α/NF-κB signaling Jinbin Wu, Yaoming Yan SLC7A2-mediated lysine catabolism inhibits immunosuppression in triple negative breast cancer Yuanyuan Sun, Yaqing Li, Chengying Jiang, Chenying Liu, Yuanming Song SIAH2-mediated degradation of ACSL4 inhibits the anti-tumor activity of CD8+ T cells in hepatocellular carcinoma Fangzheng Shu, Yuhua Shi, Xiangxiang Shan, Wenzhang Zha, Rengen Fan, Wanjiang Xue RBM15-mediated N6-methyl adenosine (m6A) modification of EZH2 drives the epithelial-mesenchymal transition of cervical cancer Ruixue Wang, Wenhua Tan Evidence-Based Storytelling and A Strategic Roadmap to Promote Cancer Prevention Via Adolescent HPV Vaccination in Northern New England Matthew Dugan, Gary Stein, Jan Carney, Sheila Clifford-Bova KDM4A-AS1 promotes cell proliferation, migration and invasion via the miR-4306/STX6 axis in hepatocellular carcinoma Wei Cao, Yuhan Ren, Ying Liu, Guoshu Cao, Zhen Chen, Fan Wang HDAC1-mediated downregulation of NEU1 exacerbates the aggressiveness of cervical cancer Nanzi Xie, Sisi Mei, Changlan Dai, Wei Chen Effect of miR-26b-5p on progression of acute myeloid leukemia by regulating USP48-mediated Wnt/β-catenin pathway Yu Xie, Lin Tan, Kun Wu, Deyun Li, Chengping Li
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain