ライブラリ登録: Guest
International Journal of Energy for a Clean Environment

年間 8 号発行

ISSN 印刷: 2150-3621

ISSN オンライン: 2150-363X

SJR: 0.597 SNIP: 1.456 CiteScore™:: 3.7 H-Index: 18

Indexed in

CONTAINER LANDSCAPING WITH Festuca Arundinacea AS BIOELECTRICAL MINISYSTEMS IN MODERN BUILDINGS

巻 20, 発行 3, 2019, pp. 211-229
DOI: 10.1615/InterJEnerCleanEnv.2019026674
Get accessGet access

要約

The model of an indoor bioelectricity-generating ministation for simultaneous use for the landscaping of apartments and as a source of bioelectricity is presented in the article. The bioelectrical technological system consists of a container with Festuca arundinacea and a universal soil substrate, where the electrode system is located. The biocomponent of the system, Festuca arundinacea, is perennial and resistant to stress factors: drought, overwetting, and shading. The bioelectrical technological system with Festuca arundinacea is year-round effective, and the seasonal reduction of the bioelectricity level is equal to 13.18%. The average annual current output of the bioelectrical system is 44.56 mA. The development of plants directly affects the production of electricity by the biosystem. The generation of bioelectricity by the biosystem is the highest during the utmost photosynthetic activity of the plants in the summer and at the beginning of the autumn period. At that time the maximal bioelectricity values have been recorded.
The bioelectrical system starts working from the first minutes after its installation due to the donors of electrons, contained in the soil and it operates practically at full capacity from the 40th day after the biosystem installation when the volume of the green biomass and the level of their photosynthetic activity reach their maximum.
The bioelectrical technological system is low-cost due to the exploitation of rather inexpensive components: biological, such as broad-spread grass seed, and technological ones: an electrodes systems and the universal soil substrate. The installation and servicing of apartment bioelectricity-generating ministation is accessible to everyone and does not require specific skills. The bioelectrical technological system with Festuca arundinacea has good prospects for improving the maximilization collecting eco-electricity in buildings.

参考
  1. Arends, J.B.A. and Verstraete W., (2012) 100 Years of Microbial Electricity Production: Three Concepts for the Future, Microb Biotechnol., 5(3), pp. 333-346. .

  2. Ashraf, M. and Harris, P.J.C., Eds., (2005) Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches, Binghamton, NH: The Haworth Press, p. 725. .

  3. Bacon, C.W., (1993) Abiotic Stress Tolerances (Moisture, Nutrients) and Photosynthesis in Endophyte-In-fected Tall Fescue, Agriculture Ecosystems Environ., 44, pp. 123-141. .

  4. Cheng, S., Liu, H., and Logan, B.E., (2006) Increased Power Generation in a Continuous Flow MFC with Advective Flow through the Porous Anode and Reduced Electrode Spacing, Environ. Sci. Technol., 40, pp. 2426-2432. .

  5. Clayton, W.D., Vorontsova, M.S., Harman, K.T., and Williamson, H., (2006) Grass Base-The Online World Grass Flora, from http://www.kew.org/data/grasses-db.html. .

  6. De Schamphelaire, L., Van Den Bossche, L., Hai, S.D., Hofte, M., Boon, N., Rabaey, K., and Verstraete, W., (2008) Microbial Fuel Cells Generating Electricity from Rhizodeposits of Rice Plants, Environ. Sci. Technol., 42(8), pp. 3053-3058. .

  7. Dennis, P.G., Miller, A.J., and Hirsch, P.R., (2010) Are Root Exudates More Important than Other Sources of Rhizodeposits in Structuring Rhizosphere Bacterial Communities?, FEMS Microbiol. Ecol., 72(3), pp. 313-327. .

  8. Dzyubenko, N.I. and Dzyubenko, E.A., (2008) The Main Agricultural Crops. Festuca Arundinacea L.-Fescue Cane, in Agroecological Atlas of Russia and Neighboring Countries: Economically Significant Plants, Their Pests, Diseases and Weeds, A.N. Afonin, S.L. Greene, N.I. Dzyubenko, and A.N. Frolov, Eds., Internet version 2.0. .

  9. Elmi, A.A. and West, C.P., (1995) Endophyte Infection Effects on Stomatal Conductance, Osmotic Adjustment and Drought Recovery of Tall Fescue, New Phytol., 131, pp. 61-67. .

  10. Gibson, D.J. and Newman, J.A., (2001) Festuca arundinacea Schreber (F elatior L. ssp. arundinacea (Schreber) Hackel), J. Ecol, 89, pp. 304-324. .

  11. Helder, M., Strik, D.P.B.T.B., Hamelers, H.V.M., and Buisman, C.J.N., (2012) The Flat-Plate Plant Microbial Fuel Cell: The Effect of a New Design on Internal Resistances, Biotechnol. Biofuels, 5, p. 70. .

  12. Helder, M., Strik, D.P.B.T.B., Hamelers, H.V.M., Kuhn, A.J., Blok, C., and Buisman C.J.N., (2010) Concurrent Bio-Electricity and Biomass Production in Three Plant-Microbial Fuel Cell Using Spartina anglica, Arundinella anomala and Arundo donax, Bioresour. Technol., 101(10), pp. 3541-3547. .

  13. Helder, M., Strik, D.P.B.T.B., Hamelers, H.V.M., Kuijken, R.C.P., and Buisman, C.J.N., (2011) New Plantgrowth Medium for Increased Power Output of the Plant-Microbial Fuel Cell, Bioresour. Technol., 104, pp. 417-423. .

  14. Helder, M., Strik, D.P.B.T.B., Timmers, R.A., Raes, S.M.T., Hamelers, H.V.M., and Buisman, C.J.N., (2013) Resilience of Roof-Top Plant-Microbial Fuel Cells during Dutch Winter, Biomass Bioenergy, 51, pp. 1-7. .

  15. Hill, D.A., Andrews, J., Sotherton, N., and Hawkins, J., (1995) Farmland. Managing Habitats for Conservation, W.J. Sutherland and D.A. Hill, Eds., Cambridge, UK: Cambridge University Press, pp. 230-266. .

  16. Hubenova, Y. and Mitov, M., (2012) Conversion of Solar Energy into Electricity by Using Duckweed in Direct Photosynthetic Plant Fuel Cell, Bioelectrochemistry, 87, pp. 185-191. .

  17. Kaku, N., Yonezawa, N., Kodama, Y., and Watanabe, K., (2008) Plant/Microbe Cooperation for Electricity Generation in a Rice Paddy Field, Appl. Microbiol. Biotechnol., 79(1), pp. 43-49. .

  18. Koen, C., Sudirjo, E., Buisman, C.J.N., and Strik, D.P.B.T.B., (2015) Electricity Generation by a Plant Microbial Fuel Cell with an Integrated Oxygen Reducing Biocathod, Appl. Energy, 137, pp. 151-157. .

  19. Kuijken, R.C., Snel, J.F., Bouwmeester, H.J., and Marcelis, L.F., (2011) Quantification of Exudation for the Plant-Microbial Fuel Cell, Commun. Agric. Appl. Biol. Sci., 76(2), pp. 15-18. .

  20. Kuzyakov, Y. and Domanski, G., (2000) Carbon Input by Plants into the Soil, Review, J. Soil Sci. Plant Nutr, 163(4), pp. 421-431. .

  21. Liu, S., Song, H., Li, X., and Yang, F., (2013) Power Generation Enhancement by Utilizing Plant Photosynthate in Microbial Fuel Cell Coupled Constructed Wetland System, IJP, Article ID 172010, pp. 1-10. .

  22. Lovley, D.R., Ueki, T., Zhang, T., Malvankar, N.S., Shrestha, P.M., Flanagan, K.A., Aklujkar, M., Butler, J.E., Giloteaux, L., Rotaru, A.E., Holmes, D.E., Franks, A.E., Orellana, R., Risso, C., and Nevin, K.P., (2011) Geobacter: The Microbe Electric's Physiology, Ecology, and Practical Applications, Adv. Microbiol. Physiol., 59, pp. 1-100. .

  23. Lu, L., Xing, D., and Ren, Z.J., (2015) Microbial Community Structure Accompanied with Electricity Production in a Constructed Wetland Plant Microbial Fuel Cell, Bioresour. Technol., 195, pp. 115-121. .

  24. Lynch, J.M. and Whipps, J.M., (1990) Substrate Flow in the Rhizosphere, Plant Soil, 129(1), pp. 1-10. .

  25. Mead, M.N., (2008) Benefits of Sunlight: A Bright Spot for Human Health, Environ. Health Perspect, 116(4), pp. A160-A167. .

  26. Moqsud, M.A., Gazali, T.A., Omine, K., and Nakata, Y., (2017) Green Electricity by Water Plants in Organic Soil and Marine Sediment through Microbial Fuel Cell, Energy Sources Part A, 39(2), pp. 160-165. .

  27. Oon, Y.-L., Ong, S.-A., Ho, L.-N., Wong, Y.-S., Oon, Y.-S., Lehl, H.K., and Thung, W.-E., (2015) Hybrid System Up-Flow Constructed Wetland Integrated with Microbial Fuel Cell for Simultaneous Wastewater Treatment and Electricity Generation, Bioresour. Technol., 186, pp. 270-275. .

  28. Picot, M., Lapinsonniere, L., Rothballer, M., and Barriere, F., (2011) Graphite Anode Surface Modification with Controlled Reduction of Specific Aryl Diazonium Salts for Improved Microbial Fuel Cells Power Output, Biosens. Bioelectron., 28, pp. 181-188. .

  29. Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., and Oh, S.E., (2015) Microbial Fuel Cell as New Technology for Bioelectricity Generation: A Review, AEJ, 54(3), pp. 745-756. .

  30. Robson, M.J. and Jewiss, O.R., (1968) A Comparison of British and North African Varieties of Tall Fescue (Festuca arundinacea). II. Growth during Winter and Survival at Low Temperatures, J. Appl. Ecol, 5, pp. 179-190. .

  31. Regmi, R., Katechaimongkol, J., Deepang, C., Sawangareetagul S., and Nitisoravut, R., (2016) Investigation of Vetiver Grass for Bioelectricity Production and Wastewater Treatment in Low Cost Earthen Membraned Microbial Fuel Cell, Proc. of 6th Int. Conf. SEE 2016 in Conjunction with 6th Int. Conf. ICGSI 2016 and 1st Int. Conf. CTI 2016, Bangkok, Thailand, pp. 1-2. .

  32. Rothballer, M., Engel, M., Strik, D.P.B.T.B., Timmers, R.A., Schloter, M., and Hartmann, A., (2011) Comparison of Bacterial Rhizosphere Communities from Plant Microbial Fuel Cells with Different Current Production by 454 Amplicon Sequencing, Commun. Agric. Appl. Biol. Sci., 76(2), pp. 31-32. .

  33. Rusyn, I.B. and Hamkalo, Kh.R., (2018) Bioelectricity Production in an Indoor Plant-Microbial Biotechnological System with Alisma plantago-aquatica, Acta. Biol. Szeged, 62(2), pp. 170-179. .

  34. Rusyn, I.B. and Medvediev, O.V., (2015) The Method of Obtaining Bioelectricity from the Ground, Ukraine Patent 98393, filed November 17, 2014, and issued April 27, 2015. .

  35. Rusyn, I.B. and Medvediev, O.V., (2016) Biological Method of Producing Bioelectricity from Deep Soil Layers, Ukraine Patent 112093, filed March 9, 2016, and issued December 12, 2016. .

  36. Rusyn, I.B. and Medvediev, O.V., (2018) The Method for Bioelectricity Obtaining from a Container with Plants Using a System of Electrodes, Ukraine Patent 122556, filed August 28, 2017, and issued January 10, 2018. .

  37. Rusyn, I.B., (2014) Bioelectricity of Plant-Microbe Associations of Urban Soil in a Park Areas, Proc. of 1st Int. Academic Congress "Fundamental and Applied Studies in the Pacific and Atlantic Oceans Countries," Tokyo, Japan, vol. 2, pp. 75-78. .

  38. Strik, D.P.B.T.B., Hamelers, H.V.M., Snel, J.F.H., and Buisman, C.J.N., (2008) Green Electricity Production with Living Plants and Bacteria in a Fuel Cell, Int. J. Energy Res., 32(9), pp. 870-876. .

  39. Strik, D.P.B.T.B., Timmers, R.A., Helder, M., Steinbusch, K.J., Hamelers, H.V., and Buisman, C.J., (2011) Microbial Solar Cells: Applying Photo synthetic and Electrochemically Active Organisms, Trends Biotechnol, 29(1), pp. 41-49. .

  40. Swist, I., (2015) Selection of Lawn Grass: A Choice of the Best Genus, from http://sad.ukrbio.com/ua/ articles/7803. .

  41. Sykora, K.V., (1983) A Synecological Study of the Lolio-potentillion anserinae Tuxen 1947 by Means of Permanent Transects. I. Brackish Stenosaleutic Habitats, Proc. of Koninklijke Nederlandse Akademie van Wetenschappen. Series C, Biological and Medical Sciences, 86, pp. 525-566. .

  42. Takanezawa, K., Nishio, K., Kato, S., Hashimoto, K., and Watanabe, K., (2010) Factors Affecting Electric Output from Rice-Paddy Microbial Fuel Cells, Biosci. Biotechnol. Biochem., 74, pp. 1271-1273. .

  43. Timmers, R.A., Strik, D.P.B.T.B., Hameler, H.V.M., and Buisman, C.J.N., (2010) Long-term Performance of a Plant Microbial Fuel Cell with Spartina anglica, Appl. Microbiol. Biotechnol., 86(3), pp. 973-981. .

  44. Timmers, R.A., Rothballer, M., Strik, D.P.B.T.B., Engel, M., Schulz, S., Schloter, M., Hartmann, A., Hamelers, B., and Buisman, C., (2012) Microbial Community Structure Elucidates Performance of Glyceria maxima Plant Microbial Fuel Cell, Appl. Microbiol. Biotechnol., 94(2), pp. 537-548. .

  45. Wetser, K., Liu, J., Buisman, C.J.N., and Strik, D.P.B.T.B., (2015) Plant Microbial Fuel Cell Applied in Wetlands: Spatial, Temporal and Potential Electricity Generation of Spartina anglica Salt Marshes and Phragmites australis Peat Soils, Biomass Bioenergy, 83, pp. 543-550. .

  46. Wilman, D., Gao, Y., and Leitch, M.H, (1998) Some Differences between Eight Grasses within the Lolium-Festuca Complex when Grown in Conditions of Severe Water Shortage, Grass Forage Sci., 53, pp. 57-65. .

  47. Yadav, A.K., Dash, P., Mohanty, A., Abbassi, R., and Mishra, B.K., (2012) Performance Assessment of Innovative Constructed Wetland-Microbial Fuel Cell for Electricity Production and Dye Removal, Ecol. Eng., 47, pp. 126-131. .

によって引用された
  1. Rusyn Iryna, Role of microbial community and plant species in performance of plant microbial fuel cells, Renewable and Sustainable Energy Reviews, 152, 2021. Crossref

近刊の記事

APPLICATION OF MICROBIAL FUEL CELL FOR CASSAVA FERMENTATION WASTEWATER TREATMENT Anwar Ma'ruf, Agus Mulyadi Purnawanto, Latiful Hayat, Novi Astuti Experimental and regression analysis of C. I engine powered by diesel surrogate fuel from waste lubricating oil using microwave pyrolysis Mohammad Nematullah Nasim, Ravindra Babu Yarasu, Satish J. Suryawanshi PREFACE sachindra Rout, Kamalakanta Muduli, Jnana Ranjan Senapati, Aruna Kumar Behura Thermal analysis and Improvement of Municipal Solid Waste Syngas Combustion applied on Micro Gas Turbine Amornrat Kaewpradap, Sumrerng Jugjai Numerical simulation of turbulent flow in a heat exchanger equipped with fins of different materials and geometries Abin Roy, Uddala Sreekanth, Joel Ashirvadam, Saboor Shaik, Aruna Kumar Behura, Bibin B.S Low-Cost Photovoltaic Emulator With a High-Dynamic Response for Small Satellite Applications Mauricio Troviano, Germán G. Oggier Collection efficiency analysis and structure optimization of fugitive fumes from aluminum electrolysis based on multi-field coupling Shuichang Liu, Qingyu Wang, Yong Zhang, Fengzhao Mao, Huijuan Zhao, Xindan Hu Transient Analysis of Liquid Hydrogen Transfer in Cryogenic Storage Tanks Ahmad M. Mahmoud, William E Lear, SA Sherif Pure Ammonia Combustion in a Bidirectional Swirling Flow Alexander Igorevich Guryanov, Oleg A. Evdokimov, Vladimir Burtsev, Nikita Burtsev, Sergey Veretennikov, Valeriy Koshkin CFD modeling of the combustion of Ukrainian coal and biomass in a flare boiler unit TPP-210a Alexandr Baranyuk, Nataliya Dunayevska, Artur Rachinsky, Nikita Vorobyov, Petro Merenger, Evgeniy Shevel An Experimental Study of the Cooling Efficiency on Curved Surfaces with Different Shaped Holes Sergey Veretennikov, Oleg Evdokimov, Anna Kolesova Employing Granulated Bimetallic Nanocomposite of Ni/Cu@CuMOF Nanocomposite in Steam Reforming of Methanol Process for Hydrogen Production Mohammad Saleh-Abadi, Mohsen Rostami, Amir Hamzeh Farajollahi, Rasool Amirkhani, Mahdi Ebrahimi Farshchi, Mahdi Simiari INVESTIGATION THE PERFORMANCE OF AN EVACUATED TUBE SOLAR COLLECTOR FILLED WITH AL2O3/WATER NANOFLUID UNDER THE CLIMATE CONDITIONS OF AL-HILLA(IRAQ) Nagham Albakry, Ahmed Kadhim Hussein The effect of carbonization temperature on the properties of carbonaceous material obtained from ethylene-propylene-diene-monomer (EPDM) wastes Muhammet Ramazan Eren, Işıl Güneş, Esin Varol THE SOCIAL COST OF CARBON EVALUATION BASED ON CARBON CAPTURE AND STORAGE TECHNOLOGIES FOR POWER GENERATION PLANTS Okan Kon, Ismail Caner
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain