ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Atomization and Sprays
インパクトファクター: 1.737 5年インパクトファクター: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 印刷: 1044-5110
ISSN オンライン: 1936-2684

巻:
巻 30, 2020 巻 29, 2019 巻 28, 2018 巻 27, 2017 巻 26, 2016 巻 25, 2015 巻 24, 2014 巻 23, 2013 巻 22, 2012 巻 21, 2011 巻 20, 2010 巻 19, 2009 巻 18, 2008 巻 17, 2007 巻 16, 2006 巻 15, 2005 巻 14, 2004 巻 13, 2003 巻 12, 2002 巻 11, 2001 巻 10, 2000 巻 9, 1999 巻 8, 1998 巻 7, 1997 巻 6, 1996 巻 5, 1995 巻 4, 1994 巻 3, 1993 巻 2, 1992 巻 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2012004415
pages 1009-1031

STEADY AND TRANSIENT DROPLET DISPERSION IN AN AIR-ASSIST INTERNALLY MIXING CONE ATOMIZER

Amir Abbas Aliabadi
Department of Mechanical Engineering, University of British Columbia, 3321−2260 West Mall, Vancouver, British Columbia, V6T1Z4, Canada
Kelly W. J. Lim
Department of Mechanical Engineering, University of British Columbia, 3321−2260 West Mall, Vancouver, British Columbia, V6T1Z4, Canada
Steven N. Rogak
Department of Mechanical Engineering, University of British Columbia, 3321−2260 West Mall, Vancouver, British Columbia, V6T1Z4, Canada
Sheldon I. Green
Department of Mechanical Engineering, University of British Columbia, 3321−2260 West Mall, Vancouver, British Columbia, V6T1Z4, Canada

要約

Droplet dispersion for steady and transient sprays produced by an air-assist internally mixing cone atomizer is studied using high-speed laser imaging, shadowgraphy, and particle tracking velocimetry (PTV). For this spray, large droplets form close to the periphery while small droplets form close to the centerline. Radial dispersion of droplets is a function of droplet relaxation time and fluctuating flow characteristic times so that small droplets disperse more effectively in the radial direction than large droplets due to turbulent diffusion. For the transient spray, the overall axial and radial penetration of the spray is self-preserving and similar to penetration of starting continuous phase jets. Axial dispersion of droplets is a function of droplet relaxation time and the mean flow characteristic time. The leading edge of the spray exhibits higher turbulence than the trailing edge, which is characterized by very large eddies and smaller Reynolds numbers. The dispersion behavior at far-field away from the breakup region is expected to be similar for many dilute air-assist, internally mixing round sprays.


Articles with similar content:

A STUDY OF LIQUID METAL ATOMIZATION USING CLOSE-COUPLED NOZZLES, PART 2: ATOMIZATION BEHAVIOR
Atomization and Sprays, Vol.15, 2005, issue 1
Steven P. Mates, Gary S. Settles
STRUCTURE OF REACTING AND NONREACTING, NONSWIRLING, AIR-ASSISTED SPRAYS, PART I: GAS-PHASE PROPERTIES
Atomization and Sprays, Vol.3, 1993, issue 4
M. Adachi, G. Scott Samuelsen, Vincent G. McDonell
CHARACTERISTICS OF INTERIMPINGEMENT DIESEL SPRAY
Atomization and Sprays, Vol.12, 2002, issue 4
Takayuki Chiba, Masataka Arai, Kenji Amagai, Masahiro Saito
EXPERIMENTAL INVESTIGATION OF COALESCENCE AND DROPLET TRAJECTORIES BETWEEN TWO POLYDISPERSE SPRAYS
Atomization and Sprays, Vol.16, 2006, issue 3
M. Valencia-Bejarano, J. J. Nijdam, Timothy Langrish
MEAN STRUCTURE AND DROPLET BEHAVIOR IN A COAXIAL AIRBLAST ATOMIZED SPRAY: SELF-SIMILARITY AND VELOCITY DECAY FUNCTIONS
Atomization and Sprays, Vol.10, 2000, issue 6
M. de Vega, A. Lecuona