ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Atomization and Sprays
インパクトファクター: 1.737 5年インパクトファクター: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 印刷: 1044-5110
ISSN オンライン: 1936-2684

巻:
巻 30, 2020 巻 29, 2019 巻 28, 2018 巻 27, 2017 巻 26, 2016 巻 25, 2015 巻 24, 2014 巻 23, 2013 巻 22, 2012 巻 21, 2011 巻 20, 2010 巻 19, 2009 巻 18, 2008 巻 17, 2007 巻 16, 2006 巻 15, 2005 巻 14, 2004 巻 13, 2003 巻 12, 2002 巻 11, 2001 巻 10, 2000 巻 9, 1999 巻 8, 1998 巻 7, 1997 巻 6, 1996 巻 5, 1995 巻 4, 1994 巻 3, 1993 巻 2, 1992 巻 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2019030987
pages 553-576

MODELING OF AIR-ASSISTED SPRAY BREAKUP OF UREA-WATER SOLUTION USING A VOLUME-OF-FLUID METHOD

Amit Naik
Institute for Technical Combustion (ITV), Leibniz Universität Hannover, Welfengarten 1A, 30167, Germany; MAN Energy Solutions SE, Stadtbachstr. 1, 86153 Augsburg, Germany
Markus Höltermann
Institute for Technical Combustion (ITV), Leibniz Universität Hannover, Welfengarten 1A, 30167, Germany
Eric Lauer
MAN Energy Solutions SE, Stadtbachstr. 1, 86153 Augsburg, Germany
Stefan Blodig
MAN Energy Solutions SE, Stadtbachstr. 1, 86153 Augsburg, Germany
Friedrich Dinkelacker
Institute for Technical Combustion (ITV), Leibniz Universität Hannover, Welfengarten 1A, 30167, Germany

要約

Spray breakup is an important phenomenon for the injection of a urea-water solution in selective catalytic reduction (SCR) systems for efficient reduction of NOx (nitrogen oxides) from diesel engine exhaust gas. The resulting spray distribution of the urea-water solution has a high impact on the efficiency of the SCR system and possibly determines the formation of urea deposits. For air-assisted liquid breakup in a hot gas, the volume-of-fluid (VOF) simulation model is suitable to capture the interface between the liquid and gaseous fluids. In the current work, a three-dimensional computational fluid dynamics (CFD) modeling for air-assisted spray breakup of the urea-water solution is done using a volume-of-fluid method. A second order high-resolution interface capturing (HRIC) convection discretization scheme is used to capture the interface between phases. A sharpening factor is used to reduce the numerical diffusion of the ligaments. An algorithm is written, which scans the ligaments from the running simulation at the predetermined time interval and export their properties. The simulation facilitates detailed investigation of spray characteristics such as spray penetration, spray angle, droplet spectrum, and the possibility of deposit formation on the injector. The spray characteristics from VOF simulations are in good agreement with the high-speed shadowgraphy measurements carried out at a hot gas test-rig. Consequently, our results demonstrate the benefits of using VOF method to understand the mechanism involved in air-assisted spray break of the urea-water solution in SCR applications and can be useful in determining the optimum operating conditions of the air-assisted urea-water solution injector.

参考

  1. Brackbill, J., Kothe, D., and Zemach, C., A Continuum Method for Modeling Surface Tension, J. Comp. Phys, vol. 100, no. 2, pp. 335-354, 1992.

  2. Brodkey, R., The Phenomena of Fluid Motions, Boston: Addison-Wesley, 1967.

  3. Dumouchel, C., On the Experimental Investigation on Primary Atomization of Liquid Streams, Exp. Fluids, vol. 45, no. 3, pp. 371-422,2008.

  4. Edelbauer, W., Birkhold, F., Rankel, T., Pavlovic, Z., and Kolar, P., Simulation of the Liquid Break-Up at an AdBlue Injector with the Volume-of-Fluid Method Followed by Off-Line Coupled Lagrangian Particle Tracking, Comput. Fluids, vol. 157, pp. 294-311,2017.

  5. Edelbauer, W., Kolar, P., Schellander, D., Pavlovic, Z., and Almbauer, R., Numerical Simulation of Spray Breakup from Cavitating Nozzle Flow by Combined Eulerian-Eulerian and Volume-of-Fluid Methods, Int. J. Comp. Meth. Exp. Meas, vol. 6, no. 2, pp. 314-325, 2018.

  6. Grosshans, H., Movaghar, A., Cao, L., Oeverman, M., Szasz, R.-Z., and Fuch, L., Sensitivity of VOF Simulations of the Liquid Jet Breakup to Physical and Numerical Parameters, Comput. Fluids, vol. 136, pp. 312-323,2016.

  7. Grosshans, H., Szasz, R., and Fuchs, L., Development of an Efficient Statistical Volumes of Fluid- Lagrangian Particle Tracking Coupling Method, Int. J. Numer. Meth. Fluids, vol. 74, no. 12, pp. 898-918, 2014.

  8. Hebert, D., Schmidth, D., Knaus, D., Phillips, S., and Magari, P., Parallel VOF Spray Droplet Identification in an Unstructured Grid, ILASS-Americas: Institute of Liquid Atomization and Spray Systems, 4th Annual Conference, May 21-23, Hartford, CT, 2008.

  9. Herrmann, M., Detail Numerical Simulation of the Primary Atomization of a Turbulent Liquid Jet in Cross- Flow, J. Eng. Gas Turbines Power, vol. 132, no. 6, pp. 1-10, 2010.

  10. Herrmann, M., On Simulating Primary Atomization Using the Refined Level Set Grid Method, Atomization Spray, vol. 21, no. 4, pp. 283-301, 2011.

  11. Kolev, N., Multiphase Flow Dynamics 2. Thermal and Mechanical Interactions, Berlin-Heidelberg: Springer, 2012.

  12. Leonard, B., Simple High-Accuracy Resolution Program for Convective Modelling of Discontinuities, Int. J. Numer. Methods Fluids, vol. 8, no. 10, pp. 1291-1318, 1988.

  13. Levi, O., Freud, R., and Sher, E., Dynamic Surface Tension of Gasoline and Alcohol Fuel Blends, Atomization Sprays, vol. 27, no. 1, pp. 1-5, 2017.

  14. Marmottant, P. and Villermaux, E., On Spray Formation, J. FluidMech, vol. 498, pp. 73-111, 2004.

  15. Muzaferija, S. and Peric, M., Computation of Free-Surface Flows Using Interface-Tracking and Interface-Capturing Methods, Nonlinear Water Wave Interaction, O. Mahrenholtz and M. Markiewcz, Eds., Southampton: WIT Press, 2017.

  16. Pilch, M. and Erdman, C., Use of Breakup Time Data and Velocity History to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop, Int. J. Numer. Meth. Fluids, vol. 13, no. 6, pp. 741-757,1987.

  17. Reitz, R. and Bracco, F., Mechanism of Breakup of Round Liquid Jets, Encycl. Fluid Mech, vol. 3, pp. 233-249, 1986.

  18. Shinjo, J. and Umemura, A., Simulation of Liquid Jet Primary Breakup: Dynamics of Ligaments and Droplets Formation, Int. J. Multiphase Flow, vol. 36, no. 7, pp. 513-532,2010.

  19. Shinjo, J. and Umemura, A., Detailed Simulation of Primary Atomization Mechanisms in Diesel Jet Sprays (Isolated Identification of Liquid Jet Tip Effects), Pro. Combust. Inst., vol. 33, no. 2, pp. 2089-2097, 2011.

  20. Spiteri, A., Liao, Y., and Eggenschwiler, P., Comparison of Pressure and Air-Assisted Atomizers for Urea-SCR Injection in Diesel Engine Exhaust, Proc. 14th Int. Stuttgarter Symp., M. Bargende, H.C. Reuss, and J. Wiedemann, Eds., pp. 911-921, 2014.

  21. StarCCM+, StarCCM+ Documentation, 2018.

  22. Strom, H., Lundstrom, A., and Andersson, B., Choice of Urea-Spray Models in CFD Simulations of Urea-SCR Systems, Chem. Eng. J, vol. 150, no. 1, pp. 69-82,2009.

  23. Tomar, G., Fuster, D., Zaleski, S., andPopinet, S., Multiscale Simulations of Primary Atomization, Comput. Fluids, vol. 39, no. 10, pp. 1864-1874, 2010.

  24. Ubbink, O., Numerical Prediction of Two Fluid Systems with Sharp Interfaces, PhD, Imperial College of Science, Technology and Medicine, London, 1997.

  25. Waclawczyk, T. and Koronowicz, T., Modeling of the Flow in Systems of Immiscible Fluids Using Volume of Fluid Method with CICSAM Scheme, Multiphase Flows Workshop, pp. 267-276, 2005.

  26. Waclawczyk, T. and Koronowicz, T., Comparison of CICSAM and HRIC High-Resolution Schemes for Interface Capturing, J. Theoret. Appl. Mech, vol. 46, no. 2, pp. 325-345,2008.

  27. Xiao, F., Dianat, M., and McGuirk, J., LES of Turbulent Liquid Jet Primary Breakup in Turbulent Coaxial Air Flow, Int. J. Mult. Flow, vol. 60, pp. 103-118, 2014.


Articles with similar content:

SIMULATION OF FUEL-EXHAUST MIXING IN EXHAUST AFTERTREATMENT SYSTEMS USING SIMPLIFIED SPRAY MODELS FOR PULSE-WIDTH MODULATED FUEL INJECTORS
Atomization and Sprays, Vol.19, 2009, issue 5
James E. McCarthy, Jr.
Experimental Investigation of Polydisperse Spray Interaction
International Journal of Fluid Mechanics Research, Vol.24, 1997, issue 4-6
Günter Brenn, A. Selbach
MODELING OF GROUP-HOLE-NOZZLE SPRAYS USING GRID-SIZE-, HOLE-LOCATION-, AND TIME-STEP-INDEPENDENT MODELS
Atomization and Sprays, Vol.19, 2009, issue 6
Rolf D. Reitz, Chang Sik Lee, Neerav Abani, Sung Wook Park, Hyun Kyu Suh
TWO-FLUID MODELING OF SPRAY PENETRATION AND DISPERSION UNDER DIESEL ENGINE CONDITIONS
Atomization and Sprays, Vol.15, 2005, issue 3
Venkatraman Iyer, John Abraham
COMPUTATIONAL MODELING OF THREE-DIMENSIONAL COMPRESSIBLE FILLING PROCESS OF INJECTION MOLDING
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Mustafa Tutar, Ali Karakus