ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Atomization and Sprays
インパクトファクター: 1.737 5年インパクトファクター: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN 印刷: 1044-5110
ISSN オンライン: 1936-2684

巻:
巻 30, 2020 巻 29, 2019 巻 28, 2018 巻 27, 2017 巻 26, 2016 巻 25, 2015 巻 24, 2014 巻 23, 2013 巻 22, 2012 巻 21, 2011 巻 20, 2010 巻 19, 2009 巻 18, 2008 巻 17, 2007 巻 16, 2006 巻 15, 2005 巻 14, 2004 巻 13, 2003 巻 12, 2002 巻 11, 2001 巻 10, 2000 巻 9, 1999 巻 8, 1998 巻 7, 1997 巻 6, 1996 巻 5, 1995 巻 4, 1994 巻 3, 1993 巻 2, 1992 巻 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2016013485
pages 1083-1110

LIQUID JET TRAJECTORY IN A SUBSONIC GASEOUS CROSS-FLOW: AN ANALYSIS OF PUBLISHED CORRELATIONS

Meng Wang
Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 Canada
Mohsen Broumand
Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba, R3T 5V6 Canada
Madjid Birouk
Department of Mechanical and Manufacturing Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6 Canada

要約

Liquid jet penetration/trajectory in a gaseous subsonic cross-flow has been studied extensively. Numerous correlations were proposed to predict the penetration of a liquid jet in a gaseous cross-flow. However, there are considerable inconsistencies between these correlations that negatively affect the reliability of this wealth of data. Therefore the objective of the present study was to address this issue. To do so, published correlations were grouped/categorized based on jet liquid type and ambient conditions of cross-flow. This resulted in four groups: (1) water jet in a cross-flow at room conditions, (2) liquid (excluding water) jet in a cross-flow at room conditions; (3) liquid (including water) jet in a cross-flow at room temperature and elevated pressure (i.e., P = 1−20 bar), and (4) liquid (including water) jet in a cross-flow at elevated pressure and temperature conditions (i.e., P = 1−20 bar and T = 280−650 K). A thorough analysis of published correlations in each group was carried out based on the most influencing factors/parameters. For instance, gas (cross-flow) Weber number has a significant effect on a liquid jet trajectory at low We, whereas it has a negligible effect at high We. A liquid jet with high viscosity and surface tension exhibited a trajectory closer to the wall. An increase in cross-flow temperature and pressure yielded a decrease in jet penetration height at a fixed momentum flux ratio and Weber number. On the basis of these analyses, a universal correlation form was developed to predict the penetration (or trajectory) of a liquid jet in a subsonic cross-flow. Finally, it should be noted that only jets issuing from injectors/nozzles with rounded exit circular orifices were considered in this study.


Articles with similar content:

PRIMARY BREAKUP IN LIQUID-GAS MIXING LAYERS
Atomization and Sprays, Vol.1, 1991, issue 4
G. A. Ruff, P.-K. Wu, G. M. Faeth
CORRELATIONS FOR PENETRATION HEIGHT OF SINGLE AND DOUBLE LIQUID JETS IN CROSS FLOW UNDER HIGH-TEMPERATURE CONDITIONS
Atomization and Sprays, Vol.21, 2011, issue 8
Choong-Won Lee, Hyun Jin Yoon, Jung Goo Hong
THE EFFECTS OF THE HARTMAN CAVITY ON THE PERFORMANCE OF THE USGA NOZZLE USED FOR ALUMINUM SPRAY FORMING
Atomization and Sprays, Vol.8, 1998, issue 1
Norman Chigier, Tom Shih, Robert L. Kozarek, Adel Mansour
COMPARATIVE STUDY OF TWIN-FLUID ATOMIZATION USING SONIC OR SUPERSONIC GAS JETS
Atomization and Sprays, Vol.6, 1996, issue 3
Joon Sik Lee, Byung Kyu Park, Kenneth D. Kihm
IMPACT WAVE-BASED MODEL OF IMPINGING JET ATOMIZATION
Atomization and Sprays, Vol.16, 2006, issue 7
Robert J. Santoro, Harry M. Ryan, III, William E. Anderson