ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Multiscale Computational Engineering
インパクトファクター: 1.016 5年インパクトファクター: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN 印刷: 1543-1649
ISSN オンライン: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v2.i3.20
21 pages

Space-time Multiscale Laminated Theory

Ryan Lund
New York State Department of Transportation
Jacob Fish
Civil Engineering and Engineering Mechanics, Columbia University, New York, New York 10027, USA

要約

Multiscale computational techniques in space and time are developed to study the impact response of thin, elastic, laminated composites. The displacement field is approximated using asymptotic expansion in space and time. Using the homogenization procedure in space and time, nonlocal membrane and bending equations of motion are derived. The nonlocal equations are stabilized to filter out the higher frequency content. The multiscale model is verified for membrane and bending problems.


Articles with similar content:

A Multiscale Framework for Analyzing Thermo-Viscoelastic Behavior of Fiber Metal Laminates
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 4
Anastasia Muliana, Sourabh Sawant
Sensitivity of Multidimensional Discrete Linear Models with Delays
Journal of Automation and Information Sciences, Vol.28, 1996, issue 3-4
A.I. Ruban
Stochastic Modeling of Chaotic Masonry via Mesostructural Characterization
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 2
Michal Sejnoha, G. Falsone, Jan Zeman, M. Lombardo
A Multiscale Approach to Nonlinearity in Piezoelectric-Ferroelectric Smart Structures: From Micromechanics to Engineering
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 5
Oded Rabinovitch, Uri Kushnir
HOMOGENIZATION OF FIBER-REINFORCED COMPOSITES WITH RANDOM PROPERTIES USING THE LEAST-SQUARES RESPONSE FUNCTION APPROACH
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 3
Marcin Kaminski