ライブラリ登録: Guest
International Journal for Multiscale Computational Engineering

年間 6 号発行

ISSN 印刷: 1543-1649

ISSN オンライン: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

COMPUTATIONAL HOMOGENIZATION METHOD AND REDUCED DATABASE MODEL FOR HYPERELASTIC HETEROGENEOUS STRUCTURES

巻 11, 発行 3, 2013, pp. 201-225
DOI: 10.1615/IntJMultCompEng.2013005374
Get accessGet access

要約

A nonconcurrent multiscale homogenization method is proposed to compute the response of structures made of heterogeneous hyperelastic materials. The method uses a database describing the effective strain energy density function (potential) in the macroscopic right Cauchy-Green strain tensor space. Each value of the database is computed numerically by means of the finite element method on a representative volume element, the corresponding macroscopic strains being prescribed as boundary conditions. An interpolation scheme is then introduced to provide a continuous representation of the potential, from which the macroscopic stress and elastic tangent tensors can be derived during macroscopic structures calculations. To efficiently compute the interpolations at the macroscopic scale, the full database is reduced by a tensor product approximation. Several extensions are provided to handle issues related to finite strains. The accuracy of the method is tested through different numerical tests involving composites at finite strains with isotropic or anisotropic microstructures. Second-order accuracy is achieved during the macroscopic Newton-Raphson iterations.

参考
  1. Abeyaratne, R. and Triantafyllidis, N., An investigation of localization in a porous elastic material using homogenization theory. DOI: 10.1115/1.3167661

  2. Aboudi, J., Finite strain micromechanical modeling of multiphase composites. DOI: 10.1615/IntJMultCompEng.v6.i5.30

  3. Bouchart, V., Brieu, M., Kondo, D., and Abdelaziz, M. N., Implementation and numerical verification of a non-linear homogenization method applied to hyperelastic composites. DOI: 10.1016/j.commatsci.2008.01.033

  4. Carol, J. D. and Chang, J. J., Analysis of individual differences in multidimensional scaling via an n-way generalization of 'Eckart-Young' decomposition. DOI: 10.1007/BF02310791

  5. Chevalier, L. and Marco, Y., Tools for multiaxial validation of behavior laws chosen for modeling hyper-elasticity of rubber-like materials. DOI: 10.1002/pen.10948

  6. Clément, A., Soize, C., and Yvonnet, J., Computational nonlinear stochastic homogenization using a non-concurrent multiscale approach for hyperelastic heterogenous microstructures analysis. DOI: 10.1002/nme.4293

  7. deBotton, G., Transversally isotropic sequentially laminated composites in finite elasticity. DOI: 10.1016/j.jmps.2005.01.006

  8. deBotton, G., Mariton, I., and Socolsky, E. A., Neo-hookean fiber-reinforced composites in finite elasticity. DOI: 10.1016/j.jmps.2005.10.001

  9. deBotton, G. and Shmuel, G., Mechanics of composites with two families of finitely extensible fiber undergoing large deformations. DOI: 10.1016/j.jmps.2009.05.002

  10. Feyel, F., Multiscale FE<sup>2</sup> elastoviscoplastic analysis of composite structure. DOI: 10.1016/S0927-0256(99)00077-4

  11. Feyel, F., A multilevel finite element method (FE<sup>2</sup>) to describe the response of highly non-linear structures using generalized continua. DOI: 10.1016/S0045-7825(03)00348-7

  12. Feyel, F. and Chaboche, J.-L., FE<sup>2</sup> multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. DOI: 10.1016/S0045-7825(99)00224-8

  13. Gendy, A. S. and Saleeb, A. F., Nonlinear material parameter estimation for characterizing hyperelastic large strain models. DOI: 10.1007/s004660050016

  14. Ghosh, S., Lee, K., and Raghavan, P., A multilevel computational model for multiscale damage analysis in composite and porous media. DOI: 10.1016/S0020-7683(00)00167-0

  15. Harshman, A., Foundations of the parafac procedure: Models and conditions for an explanatory multi-modal factor analysis.

  16. He, Q.-C., Le Quang, H., and Feng, Z. Q., Exact results for the homogenization of elastic fiber-reinforced solids at finite strain. DOI: 10.1007/s10659-006-9049-1

  17. Kiers, H. A. L., Toward a standardized notation and terminology in multiway analysis. DOI: 10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I

  18. Kouznetsova, V. G., Geers, M. G. D., and Brekelmans, W. A. M., Multi-scale second order computational homogenization of multi-phase materials: a nested finite element solution strategy. DOI: 10.1016/j.cma.2003.12.073

  19. Lahellec, N., Mazerolle, F., and Michel, J. C., Second-order estimates for the macroscopic behavior of periodic hyperelastic composites: theory and experimental validation. DOI: 10.1016/S0022-5096(03)00104-2

  20. Lamari, H., Ammar, A., Legrain, P. C. F., Chinesta, F., and Jacquemin, F., Routes for efficient computational homogenization of nonlinear materials using the proper generalized decompositions. DOI: 10.1007/s11831-010-9051-4

  21. Li, S. and Wang, G., Introduction to Micromechanics and Nanomechanics.

  22. Lopez-Pamies, O. and Ponte-Castaneda, P., Second-order estimates for the macroscopic response and loss of ellipticity in porous rubbers at large deformations. DOI: 10.1007/s10659-005-1405-z

  23. Lopez-Pamies, O. and Ponte-Castaneda, P., On the overall behavior, microstructure evolution, and macroscopic stability in rein-forced rubbers at large deformations: I-Theory. DOI: 10.1016/j.jmps.2005.10.006

  24. Mathworks, MATLAB Tensor Toolbox Version 2.4.

  25. Michel, J. C., Lopez-Pamies, P., Ponte-Castaneda, P., and Triantafyllidis, N., Microscopic and macroscopic instabilities in finitely strained porous elastomers. DOI: 10.1016/j.jmps.2006.11.006

  26. Monteiro, E., Yvonnet, J., and He, Q.-C., Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction. DOI: 10.1016/j.commatsci.2007.11.001

  27. Ogden, R. W., Extremum principles in non-linear elasticity and their application to composites - I.Theory. DOI: 10.1016/0020-7683(78)90037-9

  28. Ogden, R. W., Saccomandi, G., and Sgura, I., Fitting hyperelastic models to experimental data. DOI: 10.1007/s00466-004-0593-y

  29. Ponte-Castaneda, P. and Tiberio, E., Second-order homogenization method in finite elasticity and applications to black-filled elastomers. DOI: 10.1016/S0022-5096(99)00087-3

  30. Smit, R., Brekelmans, W., and Meijer, H., Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. DOI: 10.1016/S0045-7825(97)00139-4

  31. Takano, N., Zako, M., and Ohnishi, Y., Macro-micro uncoupled homogenization procedure for microscopic nonlinear behavior analysis of composites. DOI: 10.2472/jsms.45.6Appendix_81

  32. Temizer, I. and Wriggers, P., An adaptive method for homogenization in orthotropic nonlinear elasticity. DOI: 10.1016/j.cma.2007.03.017

  33. Temizer, I. and Zohdi, T. I., A numerical method for homogenization in non-linear elasticity. DOI: 10.1007/s00466-006-0097-y

  34. Terada, K. and Kikuchi, N., Nonlinear homogenization method for practical applications.

  35. Terada, K. and Kikuchi, N., A class of general algorithms for multi-scale analysis of heterogeneous media. DOI: 10.1016/S0045-7825(01)00179-7

  36. Tran, A. B., Yvonnet, J., He, Q.-C., Toulemonde, C., and Sanahuja, J., A simple computational homogenization method for structures made of heterogeneous linear viscoelastic materials. DOI: 10.1016/j.cma.2011.06.012

  37. Triantafyllidis, N., Nestorovic, M. D., and Schraad, M. W., Failure surfaces for finitely strained two-phase periodic solids under general in-plane loading. DOI: 10.1115/1.2126695

  38. Triantafyllidis, N. and Schnaidt, W., Comparison of microscopic and macroscopic instabilities in a class of two-dimensional periodic composites. DOI: 10.1016/0022-5096(93)90039-I

  39. Yvonnet, J., Gonzalez, D., and He, Q.-C., Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. DOI: 10.1016/j.cma.2009.03.017

  40. Yvonnet, J. and He, Q.-C., The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. DOI: 10.1016/j.jcp.2006.09.019

  41. Zhang, T. and Golub, G. H., Rank-one approximation to high order tensor. DOI: 10.1137/S0895479899352045

によって引用された
  1. Xia Liang, Breitkopf Piotr, Multiscale structural topology optimization with an approximate constitutive model for local material microstructure, Computer Methods in Applied Mechanics and Engineering, 286, 2015. Crossref

  2. Fritzen Felix, Leuschner Matthias, Nonlinear reduced order homogenization of materials including cohesive interfaces, Computational Mechanics, 56, 1, 2015. Crossref

  3. Oskay C., Multiscale modeling of the response and life prediction of composite materials, in Numerical Modelling of Failure in Advanced Composite Materials, 2015. Crossref

  4. Bakhaty Ahmed A., Mofrad Mohammad R. K., Coupled Simulation of Heart Valves: Applications to Clinical Practice, Annals of Biomedical Engineering, 43, 7, 2015. Crossref

  5. Le B. A., Yvonnet J., He Q.‐C., Computational homogenization of nonlinear elastic materials using neural networks, International Journal for Numerical Methods in Engineering, 104, 12, 2015. Crossref

  6. Bogdanor Michael J., Oskay Caglar, Clay Stephen B., Multiscale modeling of failure in composites under model parameter uncertainty, Computational Mechanics, 56, 3, 2015. Crossref

  7. Fillep Sebastian, Mergheim Julia, Steinmann Paul, Towards an efficient two-scale approach to model technical textiles, Computational Mechanics, 59, 3, 2017. Crossref

  8. Karamnejad Amin, Sluys Lambertus Johannes, A new multi-scale scheme for modeling heterogeneous incompressible hyperelastic materials, International Journal for Numerical Methods in Engineering, 107, 7, 2016. Crossref

  9. Geers M.G.D., Yvonnet J., Multiscale modeling of microstructure–property relations, MRS Bulletin, 41, 08, 2016. Crossref

  10. Xia Liang, Breitkopf Piotr, Recent Advances on Topology Optimization of Multiscale Nonlinear Structures, Archives of Computational Methods in Engineering, 24, 2, 2017. Crossref

  11. Barroqueiro B., Dias-de-Oliveira J., Pinho-da-Cruz J., Andrade-Campos A., Multiscale analysis of heat treatments in steels: Theory and practice, Finite Elements in Analysis and Design, 114, 2016. Crossref

  12. Matouš Karel, Geers Marc G.D., Kouznetsova Varvara G., Gillman Andrew, A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, Journal of Computational Physics, 330, 2017. Crossref

  13. Xia Liang, Xia Qi, Huang Xiaodong, Xie Yi Min, Bi-directional Evolutionary Structural Optimization on Advanced Structures and Materials: A Comprehensive Review, Archives of Computational Methods in Engineering, 25, 2, 2018. Crossref

  14. Noels Ludovic, Wu Ling, Adam Laurent, Seyfarth Jan, Soni Ganesh, Segurado Javier, Laschet Gottfried, Chen Geng, Lesueur Maxime, Lobos Mauricio, Böhlke Thomas, Reiter Thomas, Oberpeilsteiner Stefan, Salaberger Dietmar, Weichert Dieter, Broeckmann Christoph, Effective Properties, in Handbook of Software Solutions for ICME, 2016. Crossref

  15. Barroqueiro B., Pinho-da-Cruz J., Dias-de-Oliveira J., Andrade-Campos A., A reduced multiscale model for heat treatments in multiphase steels, Mechanics of Materials, 102, 2016. Crossref

  16. Bhattacharjee Satyaki, Matouš Karel, A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous hyperelastic materials, Journal of Computational Physics, 313, 2016. Crossref

  17. Javili A., Saeb S., Steinmann P., Aspects of implementing constant traction boundary conditions in computational homogenization via semi-Dirichlet boundary conditions, Computational Mechanics, 59, 1, 2017. Crossref

  18. Ladevèze Pierre, On reduced models in nonlinear solid mechanics, European Journal of Mechanics - A/Solids, 60, 2016. Crossref

  19. Bibliography, in Multiscale Structural Topology Optimization, 2016. Crossref

  20. Geers Marc G. D., Kouznetsova Varvara G., Matouš Karel, Yvonnet Julien, Homogenization Methods and Multiscale Modeling: Nonlinear Problems, in Encyclopedia of Computational Mechanics Second Edition, 2017. Crossref

  21. Liu Zeliang, Kafka Orion L., Yu Cheng, Liu Wing Kam, Data-Driven Self-consistent Clustering Analysis of Heterogeneous Materials with Crystal Plasticity, in Advances in Computational Plasticity, 46, 2018. Crossref

  22. Fritzen Felix, Kunc Oliver, Two-stage data-driven homogenization for nonlinear solids using a reduced order model, European Journal of Mechanics - A/Solids, 69, 2018. Crossref

  23. Bessa M.A., Bostanabad R., Liu Z., Hu A., Apley Daniel W., Brinson C., Chen W., Liu Wing Kam, A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality, Computer Methods in Applied Mechanics and Engineering, 320, 2017. Crossref

  24. Liu Zeliang, Fleming Mark, Liu Wing Kam, Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials, Computer Methods in Applied Mechanics and Engineering, 330, 2018. Crossref

  25. Goldberg Niels, Ospald Felix, Schneider Matti, A fiber orientation-adapted integration scheme for computing the hyperelastic Tucker average for short fiber reinforced composites, Computational Mechanics, 60, 4, 2017. Crossref

  26. Geers Marc G. D., Kouznetsova Varvara G., Matouš Karel, Yvonnet Julien, Homogenization Methods and Multiscale Modeling: Nonlinear Problems, in Encyclopedia of Computational Mechanics Second Edition, 2017. Crossref

  27. Köbler Jonathan, Schneider Matti, Ospald Felix, Andrä Heiko, Müller Ralf, Fiber orientation interpolation for the multiscale analysis of short fiber reinforced composite parts, Computational Mechanics, 61, 6, 2018. Crossref

  28. Saeb Saba, Steinmann Paul, Javili Ali, Aspects of Computational Homogenization at Finite Deformations: A Unifying Review From Reuss' to Voigt's Bound, Applied Mechanics Reviews, 68, 5, 2016. Crossref

  29. Liu Zeliang, Wu C.T., Koishi M., A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials, Computer Methods in Applied Mechanics and Engineering, 345, 2019. Crossref

  30. Wu Ling, Chung Chi Nghia, Major Zoltan, Adam Laurent, Noels Ludovic, From SEM images to elastic responses: A stochastic multiscale analysis of UD fiber reinforced composites, Composite Structures, 189, 2018. Crossref

  31. Chinesta Francisco, Cueto Elias, Abisset-Chavanne Emmanuelle, Duval Jean Louis, Khaldi Fouad El, Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data, Archives of Computational Methods in Engineering, 27, 1, 2020. Crossref

  32. Wu L., Adam L., Noels L., A micromechanics-based inverse study for stochastic order reduction of elastic UD fiber reinforced composites analyses, International Journal for Numerical Methods in Engineering, 115, 12, 2018. Crossref

  33. Wu Ling, Nguyen Van-Dung, Adam Laurent, Noels Ludovic, An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites, Computer Methods in Applied Mechanics and Engineering, 348, 2019. Crossref

  34. Bhattacharjee Satyaki, Matouš Karel, A nonlinear data-driven reduced order model for computational homogenization with physics/pattern-guided sampling, Computer Methods in Applied Mechanics and Engineering, 359, 2020. Crossref

  35. Montáns Francisco J., Chinesta Francisco, Gómez-Bombarelli Rafael, Kutz J. Nathan, Data-driven modeling and learning in science and engineering, Comptes Rendus Mécanique, 347, 11, 2019. Crossref

  36. Wiśniewska Anna, Egner Halina, Optimization of Functionally Graded Structural Members by Means of New Effective Properties Estimation Method, Materials, 12, 19, 2019. Crossref

  37. Kunc Oliver, Fritzen Felix, Finite Strain Homogenization Using a Reduced Basis and Efficient Sampling, Mathematical and Computational Applications, 24, 2, 2019. Crossref

  38. Firooz Soheil, Javili Ali, Understanding the role of general interfaces in the overall behavior of composites and size effects, Computational Materials Science, 162, 2019. Crossref

  39. Schneider Matti, On the mathematical foundations of the self-consistent clustering analysis for non-linear materials at small strains, Computer Methods in Applied Mechanics and Engineering, 354, 2019. Crossref

  40. Firooz Soheil, Saeb Saba, Chatzigeorgiou George, Meraghni Fodil, Steinmann Paul, Javili Ali, Systematic study of homogenization and the utility of circular simplified representative volume element, Mathematics and Mechanics of Solids, 24, 9, 2019. Crossref

  41. Yang Hang, Guo Xu, Tang Shan, Liu Wing Kam, Derivation of heterogeneous material laws via data-driven principal component expansions, Computational Mechanics, 64, 2, 2019. Crossref

  42. Liu Zeliang, Wu C. T., Koishi M., Transfer learning of deep material network for seamless structure–property predictions, Computational Mechanics, 64, 2, 2019. Crossref

  43. Zhang Liang, Sertse Hamsasew M., Yu Wenbin, Variational asymptotic homogenization of finitely deformed heterogeneous elastomers, Composite Structures, 216, 2019. Crossref

  44. Yvonnet Julien, Nonlinear Computational Homogenization, in Computational Homogenization of Heterogeneous Materials with Finite Elements, 258, 2019. Crossref

  45. Rokoš Ondřej, Zeman Jan, Doškář Martin, Krysl Petr, Reduced integration schemes in micromorphic computational homogenization of elastomeric mechanical metamaterials, Advanced Modeling and Simulation in Engineering Sciences, 7, 1, 2020. Crossref

  46. Sokołowski Damian, Kamiński Marcin, Probabilistic homogenization of hyper-elastic particulate composites with random interface, Composite Structures, 241, 2020. Crossref

  47. Fu Shubin, Chung Eric, Mai Tina, Constraint energy minimizing generalized multiscale finite element method for nonlinear poroelasticity and elasticity, Journal of Computational Physics, 417, 2020. Crossref

  48. Xue Tianju, Beatson Alex, Chiaramonte Maurizio, Roeder Geoffrey, Ash Jordan T., Menguc Yigit, Adriaenssens Sigrid, Adams Ryan P., Mao Sheng, A data-driven computational scheme for the nonlinear mechanical properties of cellular mechanical metamaterials under large deformation, Soft Matter, 16, 32, 2020. Crossref

  49. Kunc Oliver, Fritzen Felix, Many‐scale finite strain computational homogenization via Concentric Interpolation, International Journal for Numerical Methods in Engineering, 121, 21, 2020. Crossref

  50. Minh Nguyen‐Thanh Vien, Trong Khiem Nguyen Lu, Rabczuk Timon, Zhuang Xiaoying, A surrogate model for computational homogenization of elastostatics at finite strain using high‐dimensional model representation‐based neural network, International Journal for Numerical Methods in Engineering, 121, 21, 2020. Crossref

  51. Weisheit Linda, Wenz Franziska, Lichti Tobias, Eckert Medardus, Baumann Sascha, Hübner Christof, Eberl Christoph, Andrä Heiko, Domänenübergreifende Workflows zur effizienten Entwicklung Programmierbarer Materialien, Zeitschrift für wirtschaftlichen Fabrikbetrieb, 115, 7-8, 2020. Crossref

  52. Fernández Mauricio, Jamshidian Mostafa, Böhlke Thomas, Kersting Kristian, Weeger Oliver, Anisotropic hyperelastic constitutive models for finite deformations combining material theory and data-driven approaches with application to cubic lattice metamaterials, Computational Mechanics, 67, 2, 2021. Crossref

  53. Logarzo Hernan J., Capuano German, Rimoli Julian J., Smart constitutive laws: Inelastic homogenization through machine learning, Computer Methods in Applied Mechanics and Engineering, 373, 2021. Crossref

  54. Lichti Tobias, Andrä Heiko, Leichner Alexander, Müller Ralf, Wenz Franziska, Optimal design of unit‐cell based programmable materials, PAMM, 20, 1, 2021. Crossref

  55. Gajek Sebastian, Schneider Matti, Böhlke Thomas, An FE–DMN method for the multiscale analysis of short fiber reinforced plastic components, Computer Methods in Applied Mechanics and Engineering, 384, 2021. Crossref

  56. Nguyen Van Dung, Noels Ludovic, Micromechanics-based material networks revisited from the interaction viewpoint; robust and efficient implementation for multi-phase composites, European Journal of Mechanics - A/Solids, 91, 2022. Crossref

  57. Gärtner Til, Fernández Mauricio, Weeger Oliver, Nonlinear multiscale simulation of elastic beam lattices with anisotropic homogenized constitutive models based on artificial neural networks, Computational Mechanics, 68, 5, 2021. Crossref

  58. Raju Karthikayen, Tay Tong-Earn, Tan Vincent Beng Chye, A review of the FE2 method for composites, Multiscale and Multidisciplinary Modeling, Experiments and Design, 4, 1, 2021. Crossref

  59. Hatano Ryo, Matsubara Seishiro, Moriguchi Shuji, Terada Kenjiro, Yvonnet Julien, $${\text {FE}}^r$$ method with surrogate localization model for hyperelastic composite materials, Advanced Modeling and Simulation in Engineering Sciences, 7, 1, 2020. Crossref

  60. Herath Sumudu, Xiao Xiao, Cirak Fehmi, Computational modeling and data‐driven homogenization of knitted membranes, International Journal for Numerical Methods in Engineering, 123, 3, 2022. Crossref

  61. Nguyen Van Dung, Noels Ludovic, Interaction-based material network: A general framework for (porous) microstructured materials, Computer Methods in Applied Mechanics and Engineering, 389, 2022. Crossref

  62. Amores Víctor J., San Millán Francisco J., Ben-Yelun Ismael, Montáns Francisco J., A finite strain non-parametric hyperelastic extension of the classical phenomenological theory for orthotropic compressible composites, Composites Part B: Engineering, 212, 2021. Crossref

  63. Sperl Georg, Narain Rahul, Wojtan Chris, Homogenized yarn-level cloth, ACM Transactions on Graphics, 39, 4, 2020. Crossref

  64. Avery Philip, Huang Daniel Z., He Wanli, Ehlers Johanna, Derkevorkian Armen, Farhat Charbel, A computationally tractable framework for nonlinear dynamic multiscale modeling of membrane woven fabrics, International Journal for Numerical Methods in Engineering, 122, 10, 2021. Crossref

  65. Schwarz Angela, Lichti Tobias, Wenz Franziska, Scheuring Benedikt M., Hübner Christof, Eberl Christoph, Elsner Peter, Development of a Scalable Fabrication Concept for Sustainable, Programmable Shape‐Morphing Metamaterials, Advanced Engineering Materials, 2022. Crossref

  66. Lichti Tobias, Leichner Alexander, Andrä Heiko, Müller Ralf, Wenz Franziska, Eberl Christoph, Schwarz Angela, Hübner Christof, Optimal design of shape changing mechanical metamaterials at finite strains, International Journal of Solids and Structures, 252, 2022. Crossref

  67. Kamiński Marcin, Sokołowski Damian, Probabilistic Analysis of Composite Materials with Hyper-Elastic Components, Materials, 15, 24, 2022. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain