ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Multiscale Computational Engineering
インパクトファクター: 1.016 5年インパクトファクター: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 印刷: 1543-1649
ISSN オンライン: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v2.i4.50
24 pages

Size of a Representative Volume Element in a Second-Order Computational Homogenization Framework

Varvara G. Kouznetsova
Department of Mechanical Engineering, Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven; and Netherlands Institute for Metals Research, Rotterdamseweg 137 2628 AL Delft, The Netherlands
Marc Geers
Dept. of Mechanical Engineering Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven The Netherlands
W. A. M. Brekelmans
Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

要約

In this paper the intrinsic role of the size of the microstructural representative volume element (RVE) in a second-order computational homogenization is investigated. The presented second-order computational homogenization is an extension of the classical first-order computational homogenization scheme and is based on a proper incorporation of the macroscopic gradient of the deformation tensor and the associated higher-order stress measure into the multiscale framework. The macroscopic homogenized continuum obtained through this scheme is the full second gradient continuum. It is demonstrated with several examples that the size of the microstructural RVE used in a second-order computational homogenization scheme may be related to the length scale of the associated macroscopic homogenized higher-order continuum. It is shown that the analytical second-order homogenization of a microstructurally homogeneous linearly elastic material leads to the second gradient elastic Mindlin's continuum on the macroscale, where the resulting macroscopic length scale parameter is proportional to the RVE size. Several numerical microstructural and multiscale analyses reveal the significance of the contribution of the physical and geometrical nonlinearities in the relation between the RVE size and the calculated macroscopic response. Based on the obtained results, some conclusions are drawn with respect to the choice of the microstructural RVE in the second-order computational homogenization analysis.


Articles with similar content:

A MODEL FOR THE RADIATIVE PROPERTIES OF OPAQUE ROUGH SURFACES
International Heat Transfer Conference 11, Vol.21, 1998, issue
A. Sentenac, Jean-Jacques Greffet, Remi Carminati
The Stochastic Interface Defects in Composite Materials Subjected to Aging Processes
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 4
Marcin Kaminski
A Prototype Homogenization Model for Acoustics of Granular Materials
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 5-6
Xuming Xie, Robert P Gilbert, Alexander Panchenko
Homogenization of Fiber-Reinforced Composites under the Stochastic Aging Process
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 4
Marcin Kaminski
EFFECTIVE THERMOELASTIC PROPERTIES OF HETEROGENEOUS THERMOPERISTATIC BAR OF RANDOM STRUCTURE
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 1
Valeriy A. Buryachenko, Chen Wanji, Yang Shengqi