ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Multiscale Computational Engineering
インパクトファクター: 1.016 5年インパクトファクター: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN 印刷: 1543-1649
ISSN オンライン: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2014006966
pages 115-125

INTERPHASE AND AGGREGATION: TWO EFFECTIVE PARAMETERS ON MECHANICAL BEHAVIOR OF POLYMER NANOCOMPOSITES

Saeid Arabnejad
Impact Mechanics Laboratory, Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore; Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research)
Habib Pouriayevali
Impact Mechanics Laboratory, Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
Gin Sun Lim
Impact Mechanics Laboratory, Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
Davy W. C. Cheong
Impact Mechanics Laboratory, Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore
V. P. W. Shim
Impact Mechanics Laboratory, Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore

要約

In this study, the quasistatic mechanical behavior of Nylon-6/silica nanocomposite is examined through a hybrid experimentalcomputational approach. Two factors, particle aggregation and the interphase layer, which affect the properties of such nanocomposites, are investigated. The polymer matrix behavior in the bulk and interphase regions is described using a hyperelastic material model calibrated by experimental tension test results conducted at room and reduced temperatures. The characteristics of the interphase and bulk polymer identified are used in a finite element representative volume element (RVE) to study the effects of particle aggregation and the presence of the interphase layer. The degree of particle dispersion in the RVE is defined using a parameter termed the degree of aggregation. Simulation results show that in the absence of an interphase layer, the mechanical properties of nanocomposites are independent of the degree of aggregation. However, with the presence of an interphase layer, the aggregation of nanoparticles decreases the mechanical properties of Nylon-6/silica nanocomposite.

参考

  1. Binder, K., Varnik, F., Baschnagel, J., Scheidler, P., and Kob, W., Computer simulation of the glass transition in thin films. DOI: 10.1063/1.1764217

  2. Ciprari, D., Jacob, K., and Tannenbaum, R., Characterization of polymer nanocomposite interphase and its impact on mechanical properties. DOI: 10.1021/ma0602270

  3. Dequidt, A., Long, D. R., Sotta, P., and Sanseau, O., Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: Theory and simulations. DOI: 10.1140/epje/i2012-12061-6

  4. Drozdov, A. D., Finite viscoelasticity and viscoplasticity of semicrystalline polymers. DOI: 10.1007/s00161-007-0049-6

  5. Drzal, L. T., Rich, M. J., Koenig, M. F., and Lloyd, P. F., Adhesion of graphite fibers to epoxy matrices, 2. The effect of fiber finish. DOI: 10.1080/00218468308074911

  6. Ellison, C. J. and Torkelson, J. M., The distribution of glass-transition temperatures in nanoscopically confined glass formers. DOI: 10.1038/nmat980

  7. Fish, J., Nuggehally, M. A., Shephard, M. S., Picu, C. R., Badia, S., Parks, M. L., and Gunzburger, M., Concurrent ATC coupling based on a blend of the continuum stress and the atomistic force. DOI: 10.1016/j.cma.2007.05.020

  8. Forrest, J. A. and Mattsson, J., Reductions of the glass transition temperature in thin polymer films: Probing the length scale of cooperative dynamics. DOI: 10.1103/physreve.61.r53

  9. Forrest, J. A., Rowat, A. C., Dalnoki-Veress, K., Stevens, J. R., and Dutcher, J. R., Brillouin light scattering studies of the mechanical properties of polystyrene/polyisoprene multilayered thin films. DOI: 10.1002/(SICI)1099-0488(199612)34:17<3009::AID-POLB13>3.0.CO;2-B

  10. Geng, K. B., Yang, F. Q., and Grulke, E. A., Nanoindentation of submicron polymeric coating systems. DOI: 10.1016/j.msea.2007.06.042

  11. Gupta, R. K. and Kennel, E., Polymer Nanocomposites Handbook.

  12. Holmes, D. W., Loughran, J. G., and Suehrcke, H., Constitutive model for large strain deformation of semicrystalline polymers. DOI: 10.1007/s11043-007-9023-8

  13. Hong, Z. H., Cong, Y. H., Qi, Z. M., Li, H. L., Zhou, W. M., Chen, W., Wang, X., Zhou, Y. G., and Li, L. B., Studying deformation behavior of a single spherulite with in-situ infrared microspectroscopic imaging. DOI: 10.1016/j.polymer.2011.12.009

  14. Jordan, J., Jacob, K. I., Tannenbaum, R., Sharaf, M. A., and Jasiuk, I., Experimental trends in polymer nanocomposites&mdash;A review. DOI: 10.1016/j.msea.2004.09.044

  15. Keddie, J. L., Jones, R. A. L., and Cory, R. A., Size-dependent depression of the glass-transition temperature in polymer-films. DOI: 10.1209/0295-5075/27/1/011

  16. Keledi, G., Hari, J., and Pukanszky, B., Polymer nanocomposites: Structure, interaction, and functionality. DOI: 10.1039/c2nr11442a

  17. Khan, A. S. and Farrokh, B., Thermo-mechanical response of Nylon 101 under uniaxial and multi-axial loadings; Part I. Experimental results over wide ranges of temperatures and strain rates. DOI: 10.1016/j.ijplas.2005.10.001

  18. Lin, E. K., Kolb, R., Satija, S. K., and Wu, W. L., Reduced polymer mobility near the polymer solid interface as measured by neutron reflectivity. DOI: 10.1021/ma9814604

  19. Liu, H. and Brinson, L. C., Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites. DOI: 10.1016/j.compscitech.2007.10.033

  20. O&#8216;Connell, P. A. and McKenna, G. B., Novel nanobubble inflation method for determining the viscoelastic properties of ultrathin polymer films. DOI: 10.1063/1.2409777

  21. Oyen, M. L., Cook, R. F., Emerson, J. A., and Moody, N. R., Indentation responses of time-dependent films on stiff substrates. DOI: 10.1557/JMR.2004.0308

  22. Pouriayevali, H., Guo, Y. B., and Shim, V. P. W., A constitutive description of elastomer behaviour at high strain rates &#8211; A straindependent relaxation time approach. DOI: 10.1016/j.ijimpeng.2012.04.001

  23. Pouriayevali, H., Arabnejad, S., Guo, Y. B., and Shim, V. P. W., A constitutive description of the rate-sensitive response of semicrystalline polymers. DOI: 10.1016/j.ijimpeng.2013.05.002

  24. Putz, K., Krishnamoorti, R., and Green, P. F., The role of interfacial interactions in the dynamic mechanical response of functionalized SWNT-PS nanocomposites. DOI: 10.1016/j.polymer.2007.03.072

  25. Qiao, R., Deng, H., Putz, K. W., and Brinson, L. C., Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites. DOI: 10.1002/polb.22236

  26. Ramanathan, T., Stankovich, S., Dikin, D. A., Liu, H., Shen, H., Nguyen, S. T., and Brinson, L. C., Graphitic nanofillers in pmma nanocomposites&mdash;An investigation of particle size influence on nanocomposite and dispersion and their properties. DOI: 10.1002/polb.21187

  27. Rittigstein, P., Priestley, R. D., Broadbelt, L. J., and Torkelson, J. M., Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. DOI: 10.1038/nmat1870

  28. Rong, M. Z., Zhang, M. Q., Pan, S. L., Lehmann, B., and Friedrich, K., Analysis of the interfacial interactions in polypropylene/ silica nanocomposites. DOI: 10.1002/pi.1307

  29. Rubinstein, M. and Colby, R. H., Polymer Physics.

  30. Sanchez, I. C., Physics of Polymer Surfaces and Interfaces. DOI: 10.1002/aic.690400623

  31. Sharpe, L. H., Interphase in adhesion.

  32. Sharpe, L. H., Some thoughts about mechanical response of composites. DOI: 10.1080/00218467408072236

  33. Stafford, C. M., Vogt, B. D., Harrison, C., Julthongpiput, D., and Huang, R., Elastic moduli of ultrathin amorphous polymer films. DOI: 10.1021/ma060790i

  34. van Dommelen, J. A. W., Parks, D. M., Boyce, M. C., Brekelmans, W. A. M., and Baaijens, F. P. T., Micromechanical modeling of the elasto-viscoplastic behavior of semi-crystalline polymers. DOI: 10.1016/S0022-5096(02)00063-7

  35. van Zanten, J. H., Wallace, W. E., and Wu, W. L., Effect of strongly favorable substrate interactions on the thermal properties of ultrathin polymer films. DOI: 10.1103/PhysRevE.53.R2053

  36. Varnik, F., Binder, K., and Baschnagel, J., Glass transition in thin polymer films: A molecular dynamics study. DOI: 10.1142/S0129183102003516

  37. Watcharotone, S., Wood, C. D., Friedrich, R., Chen, X. Q., Qiao, R., Putz, K., and Brinson, L. C., Interfacial and substrate effects on local elastic properties of polymers using coupled experiments and modeling of nanoindentation. DOI: 10.1002/adem.201000277

  38. Yang, L. M., Shim, V. P. W., and Lim, C. T., A visco-hyperelastic approach to modelling the constitutive behaviour of rubber. DOI: 10.1016/S0734-743X(99)00044-5

  39. Zhang, C. Y., Zhang, Y. W., and Zeng, K. Y., Extracting the mechanical properties of a viscoelastic polymeric film on a hard elastic substrate. DOI: 10.1557/JMR.2004.0382


Articles with similar content:

Hierarchical Multiscale Modeling of Nanotube-Reinforced Polymer Composites
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 5
R. Naghdabad, Jaafar Ghanbari
MULTISCALE MODEL FOR DAMAGE-FLUID FLOW IN FRACTURED POROUS MEDIA
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 4
Mahdad Eghbalian, Richard Wan
Modeling the Particle Size and Interfacial Hardening Effects in Metal Matrix Composites with Dispersed Particles at Decreasing Microstructural Length Scales
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 4
Rashid K. Abu Al-Rub
NONLINEAR MULTISCALE HOMOGENIZATION OF CARBON NANOTUBE REINFORCED COMPOSITES WITH INTERFACIAL SLIPPAGE
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 4
Dimitris Savvas, Vissarion Papadopoulos
Effects of Shape and Size of Crystal Grains on the Strengths of Polycrystalline Metals
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Kenjiro Terada, Masayoshi Akiyama, Ikumu Watanabe