ライブラリ登録: Guest
International Journal for Multiscale Computational Engineering

年間 6 号発行

ISSN 印刷: 1543-1649

ISSN オンライン: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

BIOINSPIRED IDENTIFICATION OF PARAMETERS IN MICROSCALE HEAT TRANSFER

巻 12, 発行 1, 2014, pp. 79-89
DOI: 10.1615/IntJMultCompEng.2014007963
Get accessGet access

要約

The paper is devoted to the identification of microscale heat-transfer parameters. The numerical modeling of short-pulse laser interaction with thin metal films is considered. The hyperbolic two-temperature model describing the temporal and spatial evolution of the lattice and electrons temperatures in the irradiated metal is applied. This model consists of four equations: two equations concern the electron and lattice temperatures; the later ones determine the dependencies between heat fluxes and temperatures. The short-pulse laser interaction with the film is taken into account by introducing an internal volumetric heat source to the equation describing the electron temperature. The equations concerning the electrons and lattice temperatures are joined by coupling factor G, which characterizes the energy exchange between phonons and electrons. The relations between electron heat flux and electron temperature and between the lattice heat flux and lattice temperature contain the parameters ?e and ?l, respectively. The parameter ?e is the relaxation time of free electrons in metals; the parameter ?l is the relaxation time in phonon collisions. The one-dimensional problem is analyzed. (Heat transfer in the direction perpendicular to the thin film is taken into account.) The nonflux conditions can be accepted at the front surface irradiated by a laser pulse and the back surface. The initial conditions are also assumed. The direct problem is solved by the explicit scheme of the finite difference method. The results of the computations are partially compared with the experimental data available in literature. The inverse problem discussed here consists in the simultaneous identification of three parameters, namely, the coupling factor G and relaxation times ?e and ?l. To solve such a problem, the electron temperature history at the irradiated surface of the thin film is taken into account. The inverse problems can be formulated as optimization problems and solved by means of bioinspired algorithms. The objective function is formulated on the basis of the known measured and numerical simulated values of temperature. The minimization of the objective function allows one to find the design variables vector, which may contain the parameters of the coupling factor and time coefficients in the presented case. The inverse problems are ill-defined problems, and the identification may lead to different results with the same objective function value. The objective function can have many local minima, and therefore the bioinspired algorithm is used in the paper.

参考
  1. Burczyński, T. and Kuś, W., Microstructure optimisation and identification in multiscale modeling. DOI: 10.1007/978-1-4020-9231-2_12

  2. Burczyński, T., Kuś, W., and Brodacka, A., Multiscale modeling of osseous tissues.

  3. Burczyński, T., Bereta, M., Poteralski, A., and Szczepanik, M., Immune computing: Intelligent methodology and its applications in bioengineering and computational mechanics. DOI: 10.1007/978-3-642-05241-5_9

  4. Chen, G., Borca-Tasciuc, D., and Yang, R. G., Nanoscale heat transfer.

  5. Chen, J. K. and Beraun, J. E., Numerical study of ultrashort laser pulse interactions with metal films. DOI: 10.1080/104077801300348842

  6. de Castro, L. N. and Timmis, J., Artificial immune systems as a novel soft computing paradigm. DOI: 10.1007/s00500-002-0237-z

  7. de Castro, L. N. and von Zuben, F. J., Learning and optimization using the clonal selection principle. DOI: 10.1109/TEVC.2002.1011539

  8. Długosz, A., Evolutionary computation in thermoelastic problems. DOI: 10.1007/1-4020-2267-0_7

  9. Dorigo, M. and Gambardella, L. M., Ant colony system: A cooperative learning approach to the traveling salesman problem. DOI: 10.1109/4235.585892

  10. Kennedy, J., Eberhart, R. C., and Shi, Y., Swarm Intelligence.

  11. Kuś, W. and Burczyński, T., Parallel artificial immune system in optimization of mechanical structures.

  12. Kuś, W., Grid-enabled evolutionary algorithm application in the mechanical optimization problems. DOI: 10.1016/j.engappai.2006.11.018

  13. Lin, Z. and Zhigilei, L. V., Electron-phonon coupling and electron heat capacity of metals under conditions of strong electronphonon nonequilibrium. DOI: 10.1103/PhysRevB.77.075133

  14. Majchrzak, E. and Dziatkiewicz, J., Identification of electron-phonon coupling factor in a thin metal film subjected to an ultrashort laser pulse.

  15. Majchrzak, E. and Poteralska, J., Numerical analysis of short-pulse laser interactions with thin metal film.

  16. Majchrzak, E. and Paruch, M., Identification of electromagnetic field parameters assuring the cancer destruction during hyperthermia treatment. DOI: 10.1080/17415977.2010.531473

  17. Majchrzak, E., Mochnacki, B., and Poteralska, J., Estimation of laser intensity in a process of thin metal film heating.

  18. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolutionary Algorithms.

  19. Poteralski, A., Szczepanik, M., Dziatkiewicz, G., Kuś, W., and Burczyński, T., Immune identification of piezoelectric material constants using BEM. DOI: 10.1080/17415977.2010.519027

  20. Zhang, Z. M., Nano/Microscale Heat Transfer.

によって引用された
  1. Majchrzak E., Turchan L., Modeling of phase changes in the metal micro-domains subjected to ultrafast laser heating using dual-phase lag equation, Materialwissenschaft und Werkstofftechnik, 47, 5-6, 2016. Crossref

  2. Majchrzak E, Dziatkiewicz J, Modelling of phase changes in thin metal film subjected to ultrafast laser heating using the two-temperature model, in Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues, 2016. Crossref

  3. Kus Waclaw, Dziatkiewicz Jolanta, Multicriteria identification of parameters in microscale heat transfer, International Journal of Numerical Methods for Heat & Fluid Flow, 27, 3, 2017. Crossref

  4. Paruch Marek, Identification of the cancer ablation parameters during RF hyperthermia using gradient, evolutionary and hybrid algorithms, International Journal of Numerical Methods for Heat & Fluid Flow, 27, 3, 2017. Crossref

  5. Majchrzak Ewa, Dziatkiewicz Jolanta, Turchan Łukasz, Sensitivity Analysis and Inverse Problems in Microscale Heat Transfer, Defect and Diffusion Forum, 362, 2015. Crossref

  6. Piasecka-Belkhayat Alicja, Korczak Anna, Numerical modelling of transient heat transport in a two-layered metal film using the fuzzy lattice Boltzmann method with α-cuts, 1922, 2018. Crossref

  7. Majchrzak Ewa, General Boundary Element Method for the Dual-Phase Lag Equations Describing the Heating of Two-Layered Thin Metal Films, in Engineering Design Applications II, 113, 2020. Crossref

  8. Piasecka-Belkhayat A., Korczak A., Numerical modeling of thermal processes in heated metal films with imprecise parameters and periodic boundary conditions, 3RD NATIONAL CONFERENCE ON CURRENT AND EMERGING PROCESS TECHNOLOGIES – CONCEPT 2020, 2240, 2020. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain