ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Multiscale Computational Engineering
インパクトファクター: 1.016 5年インパクトファクター: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 印刷: 1543-1649
ISSN オンライン: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2019029858
pages 317-338

COMPUTATIONAL MODELING OF THERMOPLASTIC BEHAVIOR OF INCONEL 718 IN APPLICATION TO LASER-ASSISTED BENDING OF THIN-WALLED TUBES

Zdzisław Nowak
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
Marcin Nowak
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
Ryszard B. Pecherski
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
K. Wisniewski
Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
J. Widłaszewski
Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
P. Kurp
Kielce University of Technology, Kielce, 02-106, Poland

要約

Laser-assisted tube bending is a promising manufacturing process which enables production of forms and shapes that cannot be obtained by purely mechanical bending. It is particularly suitable for high hardness and brittle materials, such as nickel alloys, ceramics and cast iron.
In the current paper, mechanical loading and simultaneous heating by a moving laser beam are used in a controlled manner to obtain the required deformation. Experimental investigation of the Inconel 718 (IN718) alloy provides the basis for identification of parameters of two constitutive models, which encompass softening phenomena and the coupling of temperature and strains.
Numerical simulations are conducted to provide more insight into the laser-assisted bending process of the IN718 thin-walled tubes. Temperature, stress and deformation fields are determined in sequentially coupled thermo-mechanical analyses using the FE code ABAQUS. Laser beam is modeled as a surface heat flux using the dedicated DFLUX procedure. The temperature field is used as a thermal load in the static general step, together with an external mechanical load. The process of tube bending is controlled by the displacement of the piston rod of the actuator, while the thrust force is the resulting value.

参考

  1. Atkins, A.G. and Martins, P.A.F., Encyclopedia of Materials: Science and Technology, London: Pergamon, 2001.

  2. Bammer, F., Holzinger, B., Humenberger, G., Schuocker, D., and Schumi, T., Integration of High Power Lasers in Bending Tools, Phys. Procedia, vol. 5, pp. 205-209,2010.

  3. Bammer, F., Schuocker, D., Schumi, T., Holzinger, B., and Humenberger, G., A Diode-Laser-System for Laser-Assisted Bending of Brittle Materials, Adv. Optical Technol., vol. 2011, p. 4. Article ID 321807,2011.

  4. Chaparro, B.M., Thuillier, S., Menezes, L.F., Manach, P.Y., and Fernandes, J.V., Material Parameters Identification: Gradient-Based, Genetic and Hybrid Optimization Algorithms, Comput. Mater. Sci., vol. 44, no. 2, pp. 339-346, 2008.

  5. Che Jamil, M.S., Imam Fauzi, E.R., Juinn, C.S., and Sheikh, M.A., Laser Bending of Pre-Stressed Thin-Walled Nickel Micro-Tubes, Optics Laser Technol., vol. 73, pp. 105-117,2015.

  6. Daxin, E. and Li, R., Influence of Additional Tensile Force on the Stress and Deformation of Numerically Controlled Tube Bending, Int. J. Adv. Manuf. Technol, vol. 78, pp. 895-905,2015.

  7. Drucker, D.C. and Prager, W., Soil Mechanics and Plastic Analysis or Limite Design, Q. Appl. Math., vol. 10, pp. 157-175,1952.

  8. Duflou, J.R. and Aerens, R., Force Reduction in Bending of Thick Steel Plates by Localized Preheating, Ann. CIRP, vol. 55, no. 1,2006.

  9. Frackiewicz, H., Forming Metal Pipe and Tube with Laser. High-Power Optical Beam Method Developed for Fabricators, Tube Pipe Quarterly, vol. 3, no. 3, 1992.

  10. Geers, M.G.D., Kouznetsova, V.G., and Brekelmans, W.A.M., Multi-Scale Computational Homogenization: Trends and Challenges, J. Comput. Appl. Math, vol. 234, pp. 2175-2182,2010.

  11. Ghosh, S., Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method, Boca Raton, FL: CRC Press, London-New York: Taylor and Francis Group, 2011.

  12. Ghosh, S., Nowak, Z., and Lee, K., Quantitative Characterization and Modeling of Composite Microstructures by Voronoi Cells, Acta Mater., vol. 45, no. 6, pp. 2215-2234,1997.

  13. Goldbeck, G., Foreword, in Industrial Applications ofMolecular Simulations,M.. Meunier, Ed., Boca Raton, FL: CRC Press, New York: Taylor & Francis Group, 2012.

  14. Harth, T., Schwan, S., Lehn, J., and Kollmann, F.G., Identification of Material Parameters for Inelastic Constitutive Models: Statistical Analysis and Design of Experiments, Int. J. Plasticity, vol. 20, nos. 8-9, pp. 1403-1440,2004.

  15. Hsieh, H. S. and Lin, J., Study of the Buckling Mechanism in Laser Tube Forming with Axial Preloads, Int. J. Mach. Tools Manuf, vol. 45,pp. 1368-1374,2005.

  16. Iturbe, A., Giraud, E., Hormaetxe, E., Garay, A., Germain, G., Ostolaza, K., and Arrazola, P.J., Mechanical Characterization and Modelling of Inconel 718 Material Behavior for Machining Process Assessment, Mater. Sci. Eng. A, vol. 682, pp. 441-453, 2017.

  17. Iyer, S.K. and Lissenden, C.J., Multiaxial Constitutive Model Accounting for the Strength-Differential in Inconel 718, Int. J. Plasticity, vol. 19, pp. 2055-2081,2003.

  18. Jiang, S., Sun, D., Zhang, Y., and Yan, B., Influence of Heat Treatment on Microstructures and Mechanical Properties of NiCuCr-MoTiAlNb Nickel-Based Alloy, Metals, vol. 8, no. 217, pp. 1-13,2018.

  19. Johnson, G.R. and Cook, W.H., Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures, Eng. Fracture Mechan., vol. 21, no. 1, pp. 31-48,1985.

  20. Kalidindi, S.R., Data Science and Cyberinfrastructure: Critical Enablers for Accelerated Development of Hierarchical Materials, Int. Mater. Rev, vol. 60, no. 3, pp. 150-168,2015.

  21. Kratky, A., Laser Assisted Forming Techniques, Proc. SPIE, vol. 6346, pp. (634615) 1-11,2007.

  22. Lawitzki, R., Hassan, S., Karge, L., Wagner, J., Wang, D., von Kobylinski, J., Krempaszky, C., Hofmann, M., Gilles, R., and Schmitz, G., Inconel 718 by a Complementary Study with Small-Angle Neutron Scattering and Analytical Microscopy, Acta Mater., vol. 163, pp. 28-39,2019.

  23. Li, D.F., Golden, B.J., and O'Dowd, N.P., Multiscale Modelling of Mechanical Response in a Martensitic Steel: a Micromechanical and Length-Scale-Dependent Framework for Precipitate Hardening, Acta Mater., vol. 80, pp. 445-456,2014a.

  24. Li, H., Yang, H., and Zhang, Z., 5.16 Hot Tube-Forming, in Comprehensive Materials Processing, S. Hashmi, G.F. Batalha, C.J.V. Tyne, and B. Yilbas, Eds., Amsterdam: Elsevier, pp. 321-350,2014b.

  25. Liedl, G., Kratky, A., and Schuocker, D., Laser Assisted Shaping of Metallic Sheets and Wires - A Promising New Application of High Power Lasers, Proc. SPIE, vol. 4760 (II), pp. 633-644,2002.

  26. Lin, Y.C., Li, K.K., Li, H.B., Chen, J., Chen, X.M., and Wen, D.X., New Constitutive Model for High-Temperature Deformation Behavior of Inconel 718 Superalloy, Mater. Design, vol. 74, pp. 108-118,2015.

  27. Lissenden, C.J., Gil, C.M., and Lerch, B.A., A Methodology for Determining Rate-Dependent Flow Surfaces for Inconel 718, J. Testing Evaluation, vol. 27, no. 6, pp. 402-411,1999.

  28. Lubliner, J., Oliver, J., Oller, S., and Onate, E., A Plastic-Damage Model for Concrete, Int. J. Solids Struct., vol. 25, pp. 299-326, 1989.

  29. Maj, P., Zdunek, J., Gizynski, M., Mizera, J., and Kurzydlowski, K.J., Statistical Analysis of the Portevin-Le Chatelier Effect in Inconel 718 at High Temperature, Mater. Sci. Eng., vol. 619, pp. 158-164,2014.

  30. Monteiro, E., Yvonnet, J., and He, Q.C., Computational Homogenization for Nonlinear Conduction in Heterogeneous Materials Using Model Reduction, Comput. Mater. Sci., vol. 42, no. 4, pp. 704-712,2008.

  31. Mucha, Z., Widlaszewski, J., Kurp, P., and Mulczyk, K., Mechanically Assisted Laser Forming of Thin Beams, Proc. SPIE, vol. 10159, pp. 1-10,2016.

  32. Neugebauer, R., Altan, T., Geiger, M., Kleiner, M., and Sterzing, A., Sheet Metal Forming at Elevated Temperatures, CIRP Ann. - Manuf. Technol., vol. 55, no. 2, pp. 793-816,2006.

  33. Nowak, Z., Nowak, M., Widlaszewski, J., and Kurp, P., Experimental and Numerical Investigation on Laser-Assisted Bending of Pre-Loaded Metal Plate, AIP Conf. Proc, vol. 1922, pp. (140006) 1-7,2018.

  34. Nowak, Z., Perzyna, P., and Pecherski, R.B., Description of Viscoplastic Flow Accounting for Shear Banding, Arch. Metall. Mater, vol. 52, no. 2, pp. 217-222,2007.

  35. Nowak, Z. and Stachurski, A., Nonlinear Regression Problem of Material Functions Identification for Porous Media Plastic Flow, Eng. Trans, vol. 49, pp. 637-661,2001.

  36. Nowak, Z. and Stachurski, A., Global Optimization in Material Functions Identification for Voided Plastic Flow, Comput. Assisted Mech. Eng. Sci, vol. 9, pp. 205-221,2002.

  37. Okman, O., Ozmen, M., Huwiler, H., and Tekkaya, A., Free Forming of Locally Heated Specimens, Int. J. Machine Tools Manufact., vol. 47, nos. 7-8, pp. 1197-1205,2007.

  38. Ozdemir, I., Brekelmans, W.A.M., and Geers, M.G.D., FE2 Computational Homogenization for the Thermo-Mechanical Analysis of Heterogeneous Solids, Comput. Methods Appl. Mech. Engrg., vol. 198, nos. 3-4, pp. 602-613,2008.

  39. Pecherski, R.B., Szeptynski, P., and Nowak, M., An Extension of Burzynski Hypothesis of Material Effort Accounting for the Third Invariant of Stress Tensor, Arch. Metall. Mater, vol. 56, no. 2, pp. 503-508,2011.

  40. Pereira, J.M. and Lerch, B.A., Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications, Int. J. Impact Eng., vol. 25, pp. 715-733,2001.

  41. Pinz, M., Weber, G., Lenthe, W.C., Uchic, M.D., Pollock, T.M., and Ghosh, S., Microstructure and Property based Statistically Equivalent RVEs for Intragranular y-y' Microstructures ofNi-based Superalloys, Acta Mater., vol. 157, pp. 245-258,2018.

  42. Ponthot, J.P. and Kleinerman, J.P., A Cascade Optimization Methodology for Automatic Parameter Identification and Shape/Process Optimization in Metal Forming Simulation, Comput. Methods Appl. Mechan. Eng., vol. 195, nos. 41-43, pp. 5472-5508,2006.

  43. Prasad, K.S., Panda, S.K., Kar, S.K., Murty, S.V.S.N., and Sharma, S.C., Effect of Solution Treatment on Deep Drawability of IN718 Sheets: Experimental Analysis and Metallurgical Characterization, Mater. Sci. Eng. A, vol. 727, pp. 97-112,2018.

  44. Quey, R., Dawson, P., and Barbe, F., Large-Scale 3D Random Polycrystals for the Finite Element Method: Generation, Meshing and Remeshing, Comput. Methods Appl. Mech. Eng., vol. 200, no. 17, pp. 1729-1745,2011.

  45. Romero, P.M., Rodriguez, G., and Vazquez, J., Characterization and Modelling of Advanced High Strength Steels Behaviour under Laser-Assisted Mechanical Forming, Proc. of LANE 2007, pp. 597-608,2007.

  46. Schuocker, D., Laser Assisted Forming, Proc. SPIE, vol. 4065, pp. 117-127,2000.

  47. Simulia, ABAQUS/Standard User's Manual, 6.14, Providence, RI: Dassault Systemes, 2014.

  48. Special Metals, INCONEL Alloy 718, from http://www.specialmetals.com/assets/smc/documents/inconel_alloy_718.pdf, 2007.

  49. Sweet, J.N., Roth, E.P., and Moss, M., Thermal Conductivity of Inconel 718 and 304 Stainless Steel, Int. J. Thermophys., vol. 8, no. 5, pp. 593-606,1987.

  50. Vadillo, G., Fernandez-Saez, J., and Pecherski, R.B., Some Applications of Burzynski Yield Condition in Metal Plasticity, Mater. Design, vol. 32, pp. 628-635,2011.

  51. Wang, Y., Shao, W.Z., Zhen, L., Yang, L., and Zhang, X., Flow Behavior and Microstructures of Superalloy 718 during High Temperature Deformation, Mater. Sci. Eng. A, vol. 497, pp. 479-486,2008.

  52. Widlaszewski, J., Nowak, M., Nowak, Z., and Kurp, P., Laser-Assisted Forming of Thin-Walled Profiles, Metal Forming, vol. XXVIII, no. 3, pp. 183-198,2017.

  53. Zhang, J.M., Gao, Z.Y., Zhuang, J.Y., and Zhong, Z.Y., Mathematical Modeling of the Hot Deformation Behavior of Superalloy IN718, Metall. Mater. Trans. A, vol. 30, pp. 2701-2712,1999.


Articles with similar content:

TRANSIENT FEM SIMULATION OF 316L STAINLESS STEEL FABRICATED BY SELECTIVE LASER MELTING WITH DIFFERENT PROCESSING PARAMETERS.
4th Thermal and Fluids Engineering Conference, Vol.14, 2019, issue
Guoqiang Li, Stephen Akwaboa, Patrick Mensah, Emmanuel Duodu Amoako, Samuel Ibekwe
Asymptotic Homogenization Models for Smart Composite Plates with Rapidly Varying Thickness: Part II—Applications
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
A. V. Georgiades, A. L. Kalamkarov
Optimization of Life Time Expectance for Heat Exchangers with Special Requirements
International Heat Transfer Conference 15, Vol.21, 2014, issue
Ingo Thomas, Alexander Woitalka, Pascal Freko, Reinhold Hoelzl, Axel Lehmacher
NUMERICAL SIMULATION OF THERMAL LOAD CHARACTERISTICS OF FRICTION PAIRS IN HYDRO-VISCOUS DRIVE
International Heat Transfer Conference 16, Vol.6, 2018, issue
Hongwei Cui, Long Li, Qiliang Wang, Zisheng Lian
Postbuckling of Layered Composites by Finite Strain Micromechanical Analysis
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 5
Rivka Gilat, Jacob Aboudi