ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Multiscale Computational Engineering
インパクトファクター: 1.016 5年インパクトファクター: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 印刷: 1543-1649
ISSN オンライン: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2019028866
pages 239-260

HIGHER ORDER MULTIPOINT MESHLESS FINITE DIFFERENCE METHOD FOR TWO-SCALE ANALYSIS OF HETEROGENEOUS MATERIALS

Irena Jaworska
Institute for Computational Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland

要約

This article is an introduction to the numerical homogenization of the heterogeneous material with periodic structure by the new Multipoint solution approach−a higher order extension of the Meshless Finite Difference Method (MFDM). The recently developed Multipoint method follows the original Collatz higher order concept and the essential idea of the MFDM−the moving weighted least squares approximation, using the arbitrarily irregular cloud of nodes as well as various formulations of boundary value problems. The method improves the former procedure without the necessity of providing additional unknowns to both the mesh and the MFD operator. The Multipoint meshless method, like the MFDM, may be used at the macro and the micro levels in the two-scale analysis of heterogeneous materials based on the single Representative Volume Element (RVE). The analysis of the convergence of the effective material parameters for the set of meshes was conducted and compared with the FEM. The error analysis at the micro and macro level confirm the high quality of the Multipoint solution, which may also be used as the improved reference solution instead of the true analytical one for the a posteriori error estimation.

参考

  1. Atluri, S.N. and Shen, S., The Meshless Local Petrov-Galerkin (MLPG) Method, Los Angeles, CA: Tech Science Press, 2002.

  2. Cecot, W., Homogenizacja Obliczeniowa z Zastosowaniem Adaptacyjnej Metody Elementow Skotrczonych, Krakow, Poland: Wydaw, 2013.

  3. Cecot, W., Adaptive FEM Analysis of Selected Elastic-Viscoplastic Problems, Comput. Methods Appl. Mech. Eng., vol. 196, pp. 3859-3870, 2007.

  4. Cecot, W., Serafin, M., Jaworska, I., Klimczak, M., Milewski, S., and Rachowicz, W., Multiscale Modeling of Inelastic Heterogeneous Materials with Hp-Adaptive Finite Element Method, Kracow, Poland, CUT, Rep. 3697/B/T02/2008/34, 2010.

  5. Collatz, L., Numerische Behandlung von Differential-Gleichungen, Berlin: Springer, 1955.

  6. Demkowicz, L., Computing with Hp-Adaptive Finite Elements. One- and Two-Dimensional Elliptic and Maxwell Problems, vol. 1, London: Chapman & Hall/CRC, 2006.

  7. Fish, J., Practical Multiscaling, London: Wiley, 2013.

  8. Fish, J. and Yuan, Z., Multiscale Enrichment based on Partition of Unity, Int. J. Numer. Meth. Eng., vol. 62, pp. 1341-1359,2005.

  9. Geers, M.G.D., Kouznetsova, V.G., and Brekelmans, W.A.M., Multi-Scale First-Order and Second-Order Computational Homogenization of Microstructures towards Continua, Int. J. Multiscale Comput. Eng., vol. 1, no. 4, pp. 371-385, 2003.

  10. Hasanov, S. and Huet, C., Order Relationships for Boundary Conditions Effect in Heterogeneous Bodies Smaller than the Representative Volume, J. Mech. Phys. Solids, vol. 42, pp. 1995-2011, 1994.

  11. Hill, R., The Essential Structure of Constitutive Laws for Metal Composites and Polycrystals, J. Mechan. Phys. Solids, vol. 15, pp. 79-95, 1967.

  12. Jaworska, I., On the Ill-Conditioning in the New Higher Order Multipoint Method, Comput. Math. Appl., vol. 66, no. 3, pp. 238-249,2013.

  13. Jaworska, I., On Some Aspects of the Meshless FDM Application for the Heterogeneous Materials, Int. J. Multiscale Comput. Eng., vol. 15, no. 4, pp. 359-378, 2017.

  14. Jaworska, I. and Milewski, S., On Two-Scale Analysis of Heterogeneous Materials by Means of the Meshless Finite Difference Method, Int. J. Multiscale Comput. Eng., vol. 14, no. 2, pp. 113-134,2016.

  15. Jaworska, I. and Orkisz, J., Higher Order Multipoint Method-From Collatz to Meshless FDM, Eng. Anal. Bound. Elem., vol. 50, pp. 341-351,2015.

  16. Jaworska, I. and Orkisz, J., Estimation of a Posteriori Computational Error by the Higher Order Multipoint Meshless FDM, Comp. Informat., vol. 36, pp. 1447-1466, 2017.

  17. Kouznetsova, V.G., Brekelmans, W.A.M., and Baaijens, F.P.T., An Approach to Micro-Macro Modeling of Heterogeneous Materials, Comput. Mech., vol. 27, no. 1, pp. 37-48, 2001.

  18. Rrowczynski, M. and Cecot, W., A Fast Three-Level Upscaling for Short Fiber-Reinforced Composites, J. Multiscale Comput. Eng., vol. 15, no. 1,pp. 19-34,2017.

  19. Liszka, T. and Orkisz, J., Finite Difference Method for Arbitrary Irregular Meshes in Nonlinear Problems of Applied Mechanics, Structural Mechan. Reactor Technol., 1977.

  20. Madej, L., Hodgson, P.D., and Pietrzyk, M., Development of the Multi-Scale Analysis Model to Simulate Strain Localization Occurring during Material Processing, Arch. Comput. Methods Eng., vol. 16, pp. 287-318, 2009.

  21. Miehe, C. and Koch, A., Computational Micro-to-Macro Transitions of Discretized Microstructures Undergoing Small Strains, Arch. Appl. Mech., vol. 72, pp. 300-317,2002.

  22. Lukkassen, D., Persson, L., and Wall, P, Some Engineering and Mathematical Aspects on the Homogenization Method, Comp. Eng., vol. 5, pp. 519-531,1995.

  23. Oleksy, M. and Cecot, W., Application of Hp-Adaptive Finite Element Method to Two-Scale Computation, Arch. Comput. Methods Eng., vol. 22, no. 1, pp. 105-134, 2015.

  24. Orkisz, J., Finite Difference Method (Part III), in Handbook of Computational Solid Mechanics, M. Kleiber, Ed., Berlin: Springer- Verlag, pp. 336-431,1998.

  25. Zohdi, T.I. and Wriggers, P, An Introduction to Computational Micromechanics, in Lecture Notes in Applied and Computational Mechanics, vol. 20, Springer, 2008.


Articles with similar content:

ON SOME ASPECTS OF THE MESHLESS FDM APPLICATION FOR THE HETEROGENEOUS MATERIALS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 4
Irena Jaworska
AN IMPROVED HOMOGENIZATION OF INELASTIC COMPOSITES
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 3
Marta Oleksy
BAYESIAN MULTISCALE FINITE ELEMENT METHODS. MODELING MISSING SUBGRID INFORMATION PROBABILISTICALLY
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Wing Tat Leung, B. Mallick, Yalchin Efendiev, N. Guha, V. H. Hoang, S. W. Cheung
AN XFEM BASED MULTISCALE APPROACH TO FRACTURE OF HETEROGENEOUS MEDIA
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 6
Mirmohammadreza Kabiri, Franck J. Vernerey
Adaptive Bridging of Scales in Continuum Modeling Based on Error Control
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 4
Kenneth Runesson, Fredrik Larsson