ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Multiscale Computational Engineering
インパクトファクター: 1.016 5年インパクトファクター: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN 印刷: 1543-1649
ISSN オンライン: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2019029125
pages 121-150

A MULTIPHASE HOMOGENIZATION MODEL FOR THE VISCOPLASTIC RESPONSE OF INTACT SEA ICE: THE EFFECT OF POROSITY AND CRYSTALLOGRAPHIC TEXTURE

Shuvrangsu Das
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315
Pedro Ponte Castaneda
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104-6315

要約

Sea ice is a multiphase composite material with complex microstructure and viscoplastic rheology. At length scales much smaller than the size of a typical floe, sea ice consists of aggregates of hexagonal closed packed (HCP) ice crystals with embedded inclusions of brine and air. Although there can be significant variations depending on the age and depth of the ice, the dominant structure at this scale consists of columnar grains displaying a pronounced texture where the (c)-symmetry axes of the single crystal grains lie in the horizontal plane, but with random orientations in this plane. Because the HCP ice crystals exhibit highly anisotropic viscoplastic behavior, with "easy" glide on basal planes orthogonal to the (c)-axis and "hard" slip on nonbasal systems, this strong texture has significant implications for the anisotropy of the macroscopic response of intact sea ice. On the other hand, the brine-air inclusions, which are modeled as voids with elongated shapes in the vertical direction, are also expected to have significant implications for the rheological response of sea ice, most importantly, by endowing sea ice with overall compressibility. In this work, use is made of the iterated fully optimized second-order homogenization method to develop a constitutive model for the macroscopic viscoplastic response of sea ice accounting for the abovementioned microstructural variables. Comparisons to experimental results from the literature demonstrate the capabilities of the model, especially in terms of capturing the dilatational response of intact sea ice under combined hydrostatic and deviatoric mechanical loading.

参考

  1. Agoras, M., Avazmohammadi, R., and Ponte Castaneda, P., Incremental Variational Procedure for Elasto-Viscoplastic Composites and Application to Polymer-and Metal-Matrix Composites Reinforced by Spheroidal Elastic Particles, Int. J. Solids Struct., vol.97, pp. 668-686, 2016.

  2. Agoras, M. and Ponte Castafieda, P., Homogenization Estimates for Multi-Scale Nonlinear Composites, Eur. J. Mech.-A/Solids, vol. 30, no. 6, pp. 828-843, 2011.

  3. Agoras, M. and Ponte Castafieda, P., Iterated Linear Comparison Bounds for Viscoplastic Porous Materials with "Ellipsoidal" Microstructures, J. Mech. Phys. Solids, vol. 61, no. 3, pp. 701-725, 2013.

  4. Anderson, D.L. and Weeks, W.F., A Theoretical Analysis of Sea-Ice Strength, EOS, Trans. Am. Geophys. Union, vol. 39, no. 4, pp. 632-640, 1958.

  5. Aravas, N. and Ponte Castafieda, P., Numerical Methods for Porous Metals with Deformation-Induced Anisotropy, Comput. Methods Appl. Mech. Eng., vol. 193, nos. 36-38, pp. 3767-3805, 2004.

  6. Ashby, M.F. and Duval, P., The Creep of Polycrystalline Ice, Cold Regions Sci. Technol., vol. 11, no. 3, pp. 285-300, 1985.

  7. Bachmann, F., Hielscher, R., and Schaeben, H., Texture Analysis with MTEX-Free and Open Source Software Toolbox, Solid State Phenom., vol. 160, pp. 63-68, 2010.

  8. Castelnau, O., Duval, P., Lebensohn, R.A., and Canova, G.R., Viscoplastic Modeling of Texture Development in Polycrystalline Ice with a Self-Consistent Approach: Comparison with Bound Estimates, J. Geophys. Res.: Solid Earth, vol. 101, no. B6, pp. 13851-13868, 1996.

  9. Castelnau, O., Duval, P., Montagnat, M., and Brenner, R., Elasto-Viscoplastic Micromechanical Modeling of the Transient Creep of Ice, J. Geophys. Res.: Solid Earth, vol. 113, p. B11203,2008.

  10. Cole, D.M., The Microstructure of Ice and Its Influence on Mechanical Properties, Eng. Fracture Mech., vol. 68, nos. 17-18, pp. 1797-1822, 2001.

  11. Cole, D.M. and Shapiro, L.H., Observations of Brine Drainage Networks and Microstructure of Firstyear Sea Ice, J. Geophys. Res.: Oceans, vol. 103, no. C10, pp. 21739-21750, 1998.

  12. Cox, G.F. and Weeks, W.F., Equations for Determining the Gas and Brine Volumes in Sea-Ice Samples, J. Glaciol., vol. 29, no. 102, pp. 306-316, 1983.

  13. Dempsey, J.P., Research Trends in Ice Mechanics, Int. J. Solids Struct., vol. 37, nos. 1-2, pp. 131-153, 2000.

  14. Duval, P., Ashby, M.F., and Anderman, I., Rate-Controlling Processes in the Creep of Polycrystalline Ice, J. Phys. Chem., vol. 87, no. 21, pp. 4066-4074, 1983.

  15. Gherardi, M. and Lagomarsino, M.C., Characterizing the Size and Shape of Sea Ice Floes, Sci. Rep., vol. 5, p. 10226, 2015.

  16. Grennerat, F., Montagnat, M., Castelnau, O., Vacher, P., Moulinec, H., Suquet, P., and Duval, P., Experimental Characterization of the Intragranular Strain Field in Columnar Ice during Transient Creep, Acta Mater., vol. 60, no. 8, pp. 3655-3666,2012.

  17. Hershey, A.V., The Elasticity of an Isotropic Aggregate of Anisotropic Cubic Crystals, ASME J. Appl. Mech, vol. 21, no. 3, pp. 236-240, 1954.

  18. Hutchinson, J.W., Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials, Proc. R. Soc. A: Math., Phys. Eng. Sci., vol. 348, no. 1652, pp. 101-127, 1976.

  19. Idiart, M.I. and Ponte Castaneda, P., Field Statistics in Nonlinear Composites. I-Theory, Proc. R. Soc. A: Math., Phys. Eng. Sci, vol. 463, no. 2077, pp. 183-202, 2006.

  20. Jacka, T.H. and Maccagnan, M., Ice Crystallographic and Strain Rate Changes with Strain in Compression and Extension, Cold Regions Sci. Technol, vol. 8, no. 3, pp. 269-286,1984.

  21. Kroner, E., Berechnung Der Elastischen Konstanten Des Vielkristalls Aus Den Konstanten Des Einkristalls, Zeits. Phys., vol. 151, no. 4, pp. 504-518, 1958.

  22. Kuehn, G.A. and Schulson, E.M., Ductile Saline Ice, J. Glaciol, vol. 40, no. 136, pp. 566-568, 1994.

  23. Lade, P.V., Characterization of the Mechanical Behavior of Sea Ice as a Frictional Material, J. Geophys. Res.: Solid Earth, vol. 107, no. B12, pp. 10-1-10-10, 2002.

  24. Lahellec, N. and Suquet, P., Effective Response and Field Statistics in Elasto-Plastic and Elasto-Viscoplastic Composites under Radial andNonradial Loadings, Int. J. Plasticity, vol. 42, pp. 1-30, 2013.

  25. Lebensohn, R.A., Idiart, M.I., Ponte Castaneda, P., and Vincent, P.-G., Dilatational Viscoplasticity of Polycrystalline Solids with Intergranular Cavities, Philosoph. Mag, vol. 91, no. 22, pp. 3038-3067,2011.

  26. Lebensohn, R.A., Montagnat, M., Mansuy, P., Duval, P., Meysonnier, J., and Philip, A., Modeling Viscoplastic Behavior and Heterogeneous Intracrystalline Deformation of Columnar Ice Polycrystals, Acta Mater., vol. 57, no. 5, pp. 1405-1415, 2009.

  27. Lebensohn, R.A., Tome, C.N., and Ponte Castaneda, P., Self-Consistent Modelling of the Mechanical Behaviour of Viscoplastic Polycrystals Incorporating Intragranular Field Fluctuations, Philosoph. Mag., vol. 87, no. 28, pp. 4287-4322, 2007.

  28. Leblond, J.-B., Perrin, G., and Suquet, P., Exact Results and Approximate Models for Porous Viscoplastic Solids, Int. J. Plasticity, vol. 10, no. 3, pp. 213-235, 1994.

  29. Liu, Y. and Ponte Castaneda, P., Homogenization Estimates for the Average Behavior and Field Fluctuations in Cubic and Hexagonal Viscoplastic Polycrystals, J. Mech. Phys. Solids, vol. 52, no. 5, pp. 1175-1211, 2004.

  30. Lieb-Lappen, R.M., Golden, E.J., and Obbard, R.W., Metrics for Interpreting the Microstructure of Sea Ice Using X-Ray Micro-Computed Tomography, Cold Regions Sci. Technol., vol. 138, pp. 24-35, 2017.

  31. Melton, J.S. and Schulson, E.M., Ductile Compressive Failure of Columnar Saline Ice under Triaxial Loading, J. Geophys. Res.: Oceans, vol. 103, no. C10, pp. 21759-21766, 1998.

  32. Miehe, C., Strain-Driven Homogenization of Inelastic Micro-Structures and Composites based on an Incremental Variational Formulation, Int. J. Numer. Methods Eng., vol. 55, no. 11, pp. 1285-1322, 2002.

  33. Miehe, C., Schroder, J., and Schotte, J., Computational Homogenization Analysis in Finite Plasticity-Simulation of Texture Development in Polycrystalline Materials, Comput. Methods Appl. Mech. Eng., vol. 171, nos. 3-4, pp. 387-418, 1999.

  34. Morawiec, A., Orientations and Rotations, Berlin: Springer-Verlag, 2003.

  35. Nebozhyn, M.V., Gilormini, P., and Ponte Castaneda, P., Variational Self-Consistent Estimates for Viscoplastic Polycrystals with Highly Anisotropic Grains, Compt. Rendus Acad. Sci.-Ser. IIB, vol. 328, no. 1, pp. 11-17, 2000.

  36. Nebozhyn, M.V., Gilormini, P., and Ponte Castaneda, P., Variational Self-Consistent Estimates for Cubic Viscoplastic Polycrystals: the Effects of Grain Anisotropy and Shape, J. Mech. Phys. Solids, vol. 49, no. 2, pp. 313-340, 2001.

  37. Ponte Castaneda, P., Bounds for Nonlinear Composites via Iterated Homogenization, J. Mech. Phys. Solids, vol. 60, no. 9, pp. 1583-1604, 2012.

  38. Ponte Castaneda, P., Fully Optimized Second-Order Variational Estimates for the Macroscopic Response and Field Statistics in Viscoplastic Crystalline Composites, Proc. R. Soc. A: Math., Phys. Eng. Sci., vol. 471, no. 2184, p. 20150665, 2015.

  39. Ponte Castaneda, P. and Suquet, P., Nonlinear Composites, Adv. Appl. Mech., vol. 34, pp. 171-302, 1998.

  40. Ponte Castaneda, P. and Willis, J.R., The Effect of Spatial Distribution on the Effective Behavior of Composite Materials and Cracked Media, J. Mech. Phys. Solids, vol. 43, no. 12, pp. 1919-1951, 1995.

  41. Pringle, D.J., Miner, J.E., Eicken, H., and Golden, K.M., Pore Space Percolation in Sea Ice Single Crystals, J. Geophys. Res.: Oceans, vol. 114, p. C12017, 2009.

  42. Schulson, E.M., The Brittle Failure of Ice under Compression, J. Phys. Chem. B, vol. 101, no. 32, pp. 6254-6258, 1997.

  43. Schulson, E.M., Brittle Failure of Ice, Eng. Fract. Mech, vol. 68, nos. 17-18, pp. 1839-1887, 2001.

  44. Schulson, E.M. and Kuehn, G.A., Ductile Ice, Philos. Mag. Lett., vol. 67, no. 3, pp. 151-157,1993.

  45. Schulson, E.M. and Nickolayev, O.Y., Failure of Columnar Saline Ice under Biaxial Compression: Failure Envelopes and the Brittle-to-Ductile Transition, J. Geophys. Res.: Solid Earth, vol. 100, no. B11, pp. 22383-22400,1995.

  46. Shokr, M. and Sinha, N., Sea Ice: Physics and Remote Sensing, Hoboken: Wiley, 2015.

  47. Song, D., Agoras, M., and Ponte Castaneda, P., The Evolution of Pore Shape and Orientation in Plastically Deforming Metals: Implications for Macroscopic Response and Shear Localization, Mech. Mater., vol. 90, pp. 47-68, 2015.

  48. Song, D. and Ponte Castaneda, P., A Finite-Strain Homogenization Model for Viscoplastic Porous Single Crystals: I-Theory, J. Mech. Phys. Solids, vol. 107, pp. 560-579,2017.

  49. Song, D. and Ponte Castaneda, P., A Multi-Scale Homogenization Model for Fine-Grained Porous Viscoplastic Polycrystals: I-Finite-Strain Theory, J. Mech. Phys. Solids, vol. 115, pp. 102-122, 2018.

  50. Timco, G.W. and Weeks, W.F., A Review of the Engineering Properties of Sea Ice, Cold Reg. Sci. Technol., vol. 60, no. 2, pp. 107-129,2010.

  51. Tome, C.N., Lebensohn, R.A., and Kocks, U.F., A Model for Texture Development Dominated by Deformation Twinning: Application to Zirconium Alloys, Acta Metall. Mater., vol. 39, no. 11, pp. 2667-2680,1991.

  52. Weeks, W.F. and Assur, A., The Mechanical Properties of Sea Ice, Cold Regions Research and Engineering Lab, Hanover, NH, No. Science/Engineering-2-C3, 1967.

  53. Willis, J.R., Bounds and Self-Consistent Estimates for the Overall Moduli of Anisotropic Composites, J. Mech. Phys. Solids, vol. 25, no. 3, pp. 185-202, 1977.

  54. Zhan, C., Sinha, N.K., and Evgin, E., A Three Dimensional Anisotropic Constitutive Model for Ductile Behaviour of Columnar Grained Sea Ice, Acta Mater., vol. 44, no. 5, pp. 1839-1847,1996.


Articles with similar content:

GRAND CANONICAL MONTE CARLO SIMULATION OF HYDROGEN ADSORPTION IN DIFFERENT CARBON NANOSTRUCTURES
International Journal of Energy for a Clean Environment, Vol.10, 2009, issue 1-4
Tengfei Luo, John R. Lloyd
ELASTIC AND ELECTRICAL BEHAVIOR OF SOME RANDOMMULTISCALE HIGHLY-CONTRASTED COMPOSITES
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 3
Francois Willot, Dominique Jeulin
Nonlocal Elastic-Damage Interface Mechanical Model
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
Guido Borino, Francesco Parrinello, Boris Failla
Multiscale Simulation Methods in Damage Prediction of Brittle and Ductile Materials
International Journal for Multiscale Computational Engineering, Vol.8, 2010, issue 1
Carsten Konke, Stefan Hafner, Torsten Luther, Jorg Unger, Stefan Eckardt
Multiscale Dislocation Dynamics Plasticity
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 1
S. M. A. Khan, H. M. Zbib, G. Karami, M. Shehadeh