ライブラリ登録: Guest
International Journal for Multiscale Computational Engineering

年間 6 号発行

ISSN 印刷: 1543-1649

ISSN オンライン: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Thermomechanical Continuum Interpretation of Atomistic Deformation

巻 3, 発行 2, 2005, pp. 177-197
DOI: 10.1615/IntJMultCompEng.v3.i2.50
Get accessGet access

要約

This paper describes a framework for obtaining thermomechanical continuum interpretations of the results of molecular dynamics calculations. This theory is a further advancement from a pure mechanical equivalent continuum theory developed recently. The analysis is based on the decomposition of atomic particle velocity into a structural deformation part and a thermal oscillation part. On one hand, balance of momentum at the structural level yields fields of stress, body force, traction, mass density, and deformation as they appear to a macroscopic observer. The full dynamic equivalence between the discrete system and continuum system includes (i) preservation of linear and angular momenta; (ii) conservation of internal, external, and inertial work rates; and (iii) conservation of mass. On the other hand, balance of momentum for the thermal motions as it appears to an observer moving at the structural velocity yields the fields of heat flux and temperature. These quantities can be cast in a manner as to conform to the continuum phenomenological equation for heat conduction and generation, yielding scale-sensitive characterizations of specific heat, thermal conductivity, and thermal relaxation time. The coupling between the structural deformation and the thermal conduction processes results from the fact that the equations for structural deformation and for heat conduction are two different forms of the same balance of momentum equation at the fully time-resolved atomic level. This coupling occurs through an inertial force term in each of the two equations, induced by the other process. For the structural deformation equation, the inertial force term induced by thermal oscillations of atoms gives rise to the phenomenological dependence of deformation on temperature. For the heat equation, the inertial force term induced by structural deformation takes the phenomenological form of a heat source.

によって引用された
  1. Liu Xiaohu, Li Shaofan, Nonequilibrium multiscale computational model, The Journal of Chemical Physics, 126, 12, 2007. Crossref

  2. Fish Jacob, Chen Wen, Li Renge, Generalized mathematical homogenization of atomistic media at finite temperatures in three dimensions, Computer Methods in Applied Mechanics and Engineering, 196, 4-6, 2007. Crossref

  3. Li Xiaoguai, Reina Celia, Simultaneous spatial and temporal coarse-graining: From atomistic models to continuum elastodynamics, Journal of the Mechanics and Physics of Solids, 130, 2019. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain