ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Multiphase Science and Technology
SJR: 0.124 SNIP: 0.222 CiteScore™: 0.26

ISSN 印刷: 0276-1459
ISSN オンライン: 1943-6181

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.v21.i1-2.100
pages 123-140

FROM ELEMENTARY PROCESSES TO THE NUMERICAL PREDICTION OF INDUSTRIAL PARTICLE-LADEN FLOWS

Martin Sommerfeld
Martin Luther Untversitat Halle-Wittenberg Institut fur Verfahrenstechnik, Halle (Saale), Germany; Energetics and Mechanical Department, Universidad Autonoma de Occidente, Santiago de Call, Colombia
Santiago Lain
Energetics and Mechanical Department, Universidad Autonoma de Occidente, Santiago de Call, Colombia

要約

In particle-laden flows, the overall flow structure and the relevant process parameters, e.g., pressure drop or separation efficiency, are strongly affected by the elementary processes occurring on the scale of the particles. Therefore, a detailed modeling of these microscale phenomena is required when anticipating reliable numerical predictions. Here the Euler/Lagrange approach was further developed in order to calculate confined particle-laden flows in pneumatic conveying lines and gas cyclones. Special emphasis is placed on the influence of particle-wall collisions and wall roughness as well as interparticle collisions with possible agglomeration on the developing two-phase flow structure and the resulting process parameters. The models and the numerical method were validated based on the pressure drop measured along a 6-m horizontal channel. The agreement was found to be excellent for different particle sizes, mass loading, and wall roughness. The numerical predictions of a horizontal pipe flow revealed that due to a wall roughness-induced focusing of particle trajectories toward the core of the pipe, a secondary flow in the pipe cross section develops. Moreover, it was found that the additional pressure drop due to the particles in the pipe flow was higher than that in the channel due to the different wall collision behavior. The numerical calculations of particle separation in a gas cyclone revealed the importance of a detailed modeling of interparticle collisions and particle agglomeration on the resulting grade efficiency curves. Agglomeration improves the separation of fine particles substantially.

参考

  1. Boysan, F., Ayers, W. H., and Swithenbank, J., A fundamental mathematical modelling approach to cyclone design.

  2. Derksen, J. J., Sundaresan, S., and van den Akker, H. E. A., Simulation of mass-loading effects in gas-solid cyclone separators. DOI: 10.1016/j.powtec.2006.01.006

  3. Frank, Th., Wassen, E., and Yu, Q., Lagrangian prediction of disperse gas-particle flow in cyclone separators.

  4. Gorton-Hulgerth, A. and Staudinger, G., Dreidimensionale Stromungssimulation in einem Gaszyklon mit Reynolds-Stress-Modell. DOI: 10.1002/cite.330710407

  5. Gouesbet, G. and Berlemont, A., Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows. DOI: 10.1016/S0360-1285(98)00018-5

  6. Hiller R., Der Einflub von Partikelstob und Partikelhaftung auf die Abscheidung in Faserfiltern.

  7. Ho, C. A. and Sommerfeld, M., Modelling of micro-particle agglomeration in turbulent flow. DOI: 10.1016/S0009-2509(02)00172-0

  8. Ho, C. A. and Sommerfeld, M., Numerische Berechnung der Staubabscheidung im Gaszyklon unter Berucksichtigung der Partikelagglomeration. DOI: 10.1002/cite.200407068

  9. Hoekstra, A. J., Derksen, J. J., and Van Den Akker, H. E. A., An experimental and numerical study of turbulent swirling flow in gas cyclones. DOI: 10.1016/S0009-2509(98)00373-X

  10. Hoekstra, A. J., Gas Flow Field and Collection Efficiency of Cyclone Separators.

  11. Kirch, R., Der Einflub der Turbulenz auf die Partikelbewegung im Gaszyklon. Fortschrittsberichte VDI.

  12. Kohnen, G., Ruger, M., and Sommerfeld, M., Convergence behaviour for numerical calculations by the Euler/Lagrange method for strongly coupled phases.

  13. Lai­n, S., Sommerfeld, M., and Kussin, J., Experimental studies and modelling of four-way coupling in particle-laden horizontal channel flow. DOI: 10.1016/S0142-727X(02)00160-1

  14. Lain, S. and Sommerfeld, M., Euler/Lagrange computations of pneumatic conveying in a horizontal channel with different wall roughness. DOI: 10.1016/j.powtec.2007.08.013

  15. Launder, B. E., Reece, G. J., and Rodi, W., Progress in the development of a Reynolds-stress turbulence closure. DOI: 10.1017/S0022112075001814

  16. Lun, C. K. K. and Liu, H. S., Numerical simulation of dilute turbulent gas-solid flows in horizontal channels. DOI: 10.1016/S0301-9322(96)00087-0

  17. Schuch, G. and Loffler, F., Uber die Abscheidewahrscheinlichkeit von Feststoffpartikeln an Tropfen in einer Gasstromung durch Tragheitseffekte.

  18. Shi, L. and Bayless, D. J., Comparison of boundary conditions for predicting the collection efficiency of cyclones. DOI: 10.1016/j.powtec.2006.11.022

  19. Simonin, O., Statistical and continuum modelling of turbulent reactive particulate flows: Part I. Theoretical derivation of dispersed phase Eulerian modelling from probability density function kinetic equation.

  20. Sommerfeld, M., Kohnen, G., and Ruger, M., Some open questions and inconsistencies of Lagrangian particle dispersion models.

  21. Sommerfeld, M., Modellierung und numerische Berechnung von partikelbeladenen turbulenten Stromungen mit Hilfe des Euler/Lagrange-Verfahrens.

  22. Sommerfeld, M., Modelling and numerical calculation of turbulent gas-solid flows with the Euler/Lagrange approach.

  23. Sommerfeld, M. and Huber, N., Experimental analysis and modelling of particle-wall collisions. DOI: 10.1016/S0301-9322(99)00047-6

  24. Sommerfeld, M., Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence. DOI: 10.1016/S0301-9322(01)00035-0

  25. Sommerfeld, M., Analysis of collision effects for turbulent gas-particle flow in a horizontal channel: Part I. Particle transport. DOI: 10.1016/S0301-9322(03)00031-4

  26. Sommerfeld, M. and Kussin, J., Wall roughness effects on pneumatic conveying of spherical particles in a narrow horizontal channel. DOI: 10.1016/j.powtec.2004.05.002

  27. Zaichik, L. I., Pershukov, V. A., Kozelev, M. V., and Vinberg, A. A., Modeling of dynamics, heat transfer, and combustion in two-phase turbulent flows. DOI: 10.1016/S0894-1777(97)00009-5