ライブラリ登録: Guest
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

年間 4 号発行

ISSN 印刷: 1093-3611

ISSN オンライン: 1940-4360

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00005 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.07 SJR: 0.198 SNIP: 0.48 CiteScore™:: 1.1 H-Index: 20

Indexed in

LOW-FREQUENCY INDUCTIVE TRANSFORMER-TYPE DISCHARGE FOR LARGE-SCALE PLASMA PROCESSING

巻 18, 発行 4, 2014, pp. 299-309
DOI: 10.1615/HighTempMatProc.2015015703
Get accessGet access

要約

The electrophysical and thermophysical characteristics of a low-frequency (100 kHz) inductive transformer-type discharge have been investigated at an argon pressure of 10−100 Pa, discharge currents of 1−10 A, and a discharge chamber diameter of 230 mm. A self-consistent radial model of the low-frequency inductive transformer-type discharge based on the assumption of the Maxwellian electron energy distribution function and on the simultaneous solution of the balance equations for the electron and metastable atom densities, electron energy, and gas temperature, has been developed. The dependences of the electric field strength, electron and gas temperatures, electron density on the argon pressure and discharge current are calculated. It is shown that the numerical results are in satisfactory agreement with the results given by the probe and with the electric field strength measurements.

によって引用された
  1. Demin N A, Fedoseev A V, Pinaev V A, Isupov M V, Sukhinin G I, One-dimensional numerical model of a low-frequency inductively coupled plasma, Journal of Physics: Conference Series, 1128, 2018. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain