ライブラリ登録: Guest
Journal of Flow Visualization and Image Processing

年間 4 号発行

ISSN 印刷: 1065-3090

ISSN オンライン: 1940-4336

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00013 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.14 SJR: 0.201 SNIP: 0.313 CiteScore™:: 1.2 H-Index: 13

Indexed in

VISUALIZATION OF FLOW PATTERNS OF WATER IN OPEN-ENDED VERTICAL ANNULUS DURING NATURAL CONVECTION FLOW

巻 26, 発行 3, 2019, pp. 209-222
DOI: 10.1615/JFlowVisImageProc.2019028938
Get accessGet access

要約

Experiments have been carried out to understand the flow patterns encountered during natural convection subcooled boiling flow of water in an open-ended closed-loop internally heated vertical annulus at different heat fluxes. The experiments were performed on an in-house experimental setup. The flow visualization was accomplished by using high-speed area scan cameras (Basler). The boiling process was found to be periodic in nature. Thus, the flow repeats between single-phase flow, nucleate boiling, and slug flow to single-phase flow and large slug flow patterns. When the flow rate reduces due to the limited size of exit, then backflow phenomenon was also observed.

参考
  1. Abdelmessih, A., Hooper, F., and Nangia, S., Flow Effects on Bubble Growth and Collapse in Surface Boiling, Int. J. Heat Mass Transf., vol. 15, pp. 115-125, 1972. DOI: 10.1016/0017-9310(72)90170-6.

  2. Dangeton, W., Pattiya, A., Rittidech, S., and Siriwan, N., Flow Visualization of a Miniature Loop Thermosyphon, Exp. Heat Transf, vol. 26, pp. 329-342, 2013. DOI: 10.1080/08916152.2012.657743.

  3. Daniel, E., Hollingsworth, D.K., and Witte, L.C., Transition from Boiling Onset to Fully-Developed Nucleate Boiling in a Narrow Vertical Channel, Heat Transf. Eng., vol. 28, pp. 885-894, 2007. DOI: 10.1080/08916152.2012.657743.

  4. Euh, D., Ozar, B., Hibiki, T., Ishii, M., and Song, C.-H., Characteristics of Bubble Departure Frequency in a Low-Pressure Subcooled Boiling Flow, J. Nucl. Sci. Technol., vol. 47, pp. 608-617, 2010. DOI: 10.1080/18811248.2010.9720958.

  5. Harirchian, T. and Garimella, S.V., A Comprehensive Flow Regime Map for Microchannel Flow Boiling with Quantitative Transition Criteria, Int. J. Heat Mass Transf., vol. 53, pp. 2694-2702, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.02.039.

  6. Hetsroni, G., Mosyak, A., Segal, Z., and Pogrebnyak, E., Two-Phase Flow Patterns in Parallel Micro-Channels, Int. J. Multiphase Flow, vol. 29, pp. 341-360, 2003. DOI: 10.1016/S0301-9322(03)00002-8.

  7. Husain, S. and Siddiqui, M.A., Numerical and Experimental Analysis of Natural Convection Flow Boiling of Water in Internally Heated Vertical Annulus, Numer. Heat Transf. Part A, Applications, vol. 73, pp. 624-653, 2018a. DOI: 10.1080/10407782.2018.1464315.

  8. Husain, S. and Siddiqui, M.A., Experimental and Numerical Analysis of Transient Natural Convection of Water in a High Aspect Ratio Narrow Vertical Annulus, Prog. Nucl. Energy, vol. 106, pp. 1-10, 2018b. DOI: 10.1016/j.pnucene.2018.02.013.

  9. Husain, S. and Siddiqui, M.A., Experimental Studies on Natural Convection Boiling of Water in a Vertical Annulus of a Closed-Loop Thermo-Siphon, Exp. Heat Transf., vol. 30, pp. 441-462, 2017. DOI: 10.1080/08916152.2017.1283372.

  10. Husain, S. and Siddiqui, M.A., Experimental and Numerical Analyses of Natural Convection Flow in a Partially Heated Vertical Annulus, Numer. Heat Transf. Part A, Applications, vol. 70, pp. 763-775, 2016. DOI: 10.1080/10407782.2016.1214488.

  11. Husain, S., Siddiqui, M.A., and Khan, S.A., Effect of Geometrical Parameters on Natural Convection of Water in a Narrow Annulus, Prog. Nucl. Energy, vol. 112, pp. 146-161, 2019. DOI: 10.1016/J. PNUCENE.2018.12.011.

  12. Kandlikar, S.G., Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels, Exp. Therm. Fluid Sci, vol. 26, pp. 389-407, 2002. DOI: 10.1016/S0894-1777(02)00150-4.

  13. Khandekar, S., Charoensawan, P., Groll, M., and Terdtoon, P., Closed Loop Pulsating Heat Pipes. Part B: Visualization and Semi-Empirical Modeling, Appl. Therm. Eng., vol. 23, pp. 2021-2033, 2003. DOI: 10.1016/S1359-4311(03)00168-6.

  14. Maurus, R., Ilchenko, V., and Sattelmayer, T., Automated High-Speed Video Analysis of the Bubble Dynamics in Subcooled Flow Boiling, Int. J. Heat Fluid Flow, vol. 25, pp. 149-158, 2004. DOI: 10.1016/j.ijheatfluidflow.2003.11.007.

  15. Maurus, R. and Sattelmayer, T., Bubble and Boundary Layer Behavior in Subcooled Flow Boiling, Int. J. Therm. Sci, vol. 45, pp. 257-268, 2006. DOI: 10.1016/J.IJTHERMALSCI.2004.05.006.

  16. Mustafa, J., Husain, S., and Siddiqui, M.A., Experimental Studies on Natural Convection of Water in a Closed-Loop Vertical Annulus, Exp. Heat Transf., vol. 30, pp. 25-45, 2017. DOI: 10.1080/08916152.2015.1135202.

  17. Prodanovic, V., Fraser, D., and Salcudean, M., Bubble Behavior in Subcooled Flow Boiling of Water at Low Pressures and Low Flow Rates, Int. J. Multiph. Flow, vol. 28, pp. 1-19, 2002. DOI: 10.1016/ S0301-9322(01)00058-1.

  18. Puli, U., Rajvanshi, A.K., and Das, S.K., Investigation of Bubble Behavior in Subcooled Flow Boiling of Water in a Horizontal Annulus using High-Speed Flow Visualization, Heat Transf. Eng., vol. 34, pp. 838-851, 2013. DOI: 10.1080/01457632.2012.746544.

  19. Saisorn, S., Wongpromma, P., and Wongwises, S., The Difference in Flow Pattern, Heat Transfer and Pressure Drop Characteristics of Mini-Channel Flow Boiling in Horizontal and Vertical Orientations, Int. J. Multiphase Flow, vol. 101, pp. 97-112 2018. DOI: 10.1016/j.ijmultiphaseflow.2018.01.005.

  20. Siddiqui, M.A., Kamil, M., Asif, M., and Jairajpuri, A.M., Experimental Study of Boiling Incipience in a Closed Loop Vertical Annular Thermosiphon, Appl. Therm. Eng., vol. 30, pp. 1333-1340, 2010. DOI: 10.1016/j.applthermaleng.2010.02.020.

  21. Situ, R., Mi, Y., Ishii, M., and Mori, M., Photographic Study of Bubble Behaviors in Forced Convection Subcooled Boiling, Int. J. Heat Mass Transf., vol. 47, pp. 3659-3667, 2004. DOI: 10.1016/j.ijheat-masstransfer.2004.04.005.

  22. Sobierska, E., Kulenovic, R., and Mertz, R., Heat Transfer Mechanism and Flow Pattern During Flow Boiling of Water in a Vertical Narrow Channel-Experimental Results, Int. J. Therm. Sci., vol. 46, pp. 1172-1181, 2007. DOI: 10.1016/j.ijthermalsci.2007.06.011.

  23. Wang, Z., Peng, X.F., and Liu, T., Visualization of Boiling Phenomena in a Bead-Packed Structure, Exp. Heat Transf, vol. 15, pp. 177-189, 2002. DOI: 10.1080/08916150290082612.

  24. Xia, C., Hu, W., and Guo, Z., Natural Convective Boiling in Vertical Rectangular Narrow Channels, Exp. Therm. Fluid Sci, vol. 12, pp. 313-324, 1996. DOI: 10.1016/0894-1777(95)00083-6.

によって引用された
  1. Holmes A., Ewing D., Ching C. Y., Fujisawa N., Experimental study on boiling instability and occurrence of cavitation in a two-phase square pipe subjected to natural convection, Heat and Mass Transfer, 56, 10, 2020. Crossref

  2. Husain Shahid, Khan Suhail Ahmad, Siddiqui Mohammad Altamush, Wall boiling of Al2O3-water nanofluid: Effect of nanoparticle concentration, Progress in Nuclear Energy, 133, 2021. Crossref

  3. Husain Shahid, Adil Md, Arqam Mohammad, Shabani Bahman, A review on the thermal performance of natural convection in vertical annulus and its applications, Renewable and Sustainable Energy Reviews, 150, 2021. Crossref

  4. Usmani Raheel, Hussain F, Khan SA, Khan NA, Khan U, Husain S, Numerical investigation on natural convection of hybrid nanofluid Al2O3 – MWCNT/water inside a vertical annulus, IOP Conference Series: Materials Science and Engineering, 1146, 1, 2021. Crossref

  5. Khan Suhail Ahmad, Siddiqui Mohammad Altamush, Khan Zahid A., Asjad Mohammad, Husain Shahid, Numerical investigation and implementation of the Taguchi based entropy-ROV method for optimization of the operating and geometrical parameters during natural convection of hybrid nanofluid in annuli, International Journal of Thermal Sciences, 172, 2022. Crossref

  6. Bittelbrunn B. I., Fischer R., Silva M. K., Bastos J. C. S. C., Meier H. F., Single- and multiphase flow in a natural circulation thermosiphon: an experimental analysis, Experiments in Fluids, 63, 7, 2022. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain