ライブラリ登録: Guest
International Journal for Uncertainty Quantification

年間 6 号発行

ISSN 印刷: 2152-5080

ISSN オンライン: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

TRANSITIONAL ANNEALED ADAPTIVE SLICE SAMPLING FOR GAUSSIAN PROCESS HYPER-PARAMETER ESTIMATION

巻 6, 発行 4, 2016, pp. 341-359
DOI: 10.1615/Int.J.UncertaintyQuantification.2016018590
Get accessGet access

要約

Surrogate models have become ubiquitous in science and engineering for their capability of emulating expensive computer codes, necessary to model and investigate complex phenomena. Bayesian emulators based on Gaussian processes adequately quantify the uncertainty that results from the cost of the original simulator, and thus the inability to evaluate it on the whole input space. However, it is common in the literature that only a partial Bayesian analysis is carried out, whereby the underlying hyper-parameters are estimated via gradient-free optimization or genetic algorithms, to name a few methods. On the other hand, maximum a posteriori (MAP) estimation could discard important regions of the hyper-parameter space. In this paper, we carry out a more complete Bayesian inference, that combines Slice Sampling with some recently developed sequential Monte Carlo samplers. The resulting algorithm improves the mixing in the sampling through the delayed-rejection nature of Slice Sampling, the inclusion of an annealing scheme akin to Asymptotically Independent Markov Sampling and parallelization via transitional Markov chain Monte Carlo. Examples related to the estimation of Gaussian process hyper-parameters are presented. For the purpose of reproducibility, further development, and use in other applications, the code to generate the examples in this paper is freely available for download at http://github.com/agarbuno/ta2s2_codes.

によって引用された
  1. DiazDelaO F.A., Garbuno-Inigo A., Au S.K., Yoshida I., Bayesian updating and model class selection with Subset Simulation, Computer Methods in Applied Mechanics and Engineering, 317, 2017. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain