ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Uncertainty Quantification
インパクトファクター: 3.259 5年インパクトファクター: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN 印刷: 2152-5080
ISSN オンライン: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2013005679
pages 111-132

DATA-FREE INFERENCE OF UNCERTAIN PARAMETERS IN CHEMICAL MODELS

Habib N. Najm
Sandia National Laboratories P.O. Box 969, MS 9051, Livermore, CA 94551, USA
Robert D. Berry
P.O.Box 969, MS 9051; Sandia National Laboratories, Livermore, California 94551, USA
Cosmin Safta
P.O.Box 969, MS 9051; Sandia National Laboratories, Livermore, California 94551, USA
Khachik Sargsyan
Sandia National Laboratories, 7011 East Ave, MS 9051, Livermore, CA 94550, USA
Bert J. Debusschere
P.O.Box 969, MS 9051; Sandia National Laboratories, Livermore, California 94551, USA

要約

We outline the use of a data-free inference procedure for estimation of uncertain model parameters for a chemical model of methane-air ignition. The method involves a nested pair of Markov chains, exploring both the data and parametric spaces, to discover a pooled joint posterior consistent with available information. We describe the highlights of the method, and detail its particular implementation in the system at hand. We examine the performance of the procedure, focusing on the robustness and convergence of the estimated joint parameter posterior with increasing number of data chain samples. We also comment on comparisons of this posterior with the missing reference posterior density.


Articles with similar content:

Identification of Statistical Parameters in one Model of Conditional Independence
Journal of Automation and Information Sciences, Vol.31, 1999, issue 1-3
M. I. Shlezinger
HIGH DIMENSIONAL SENSITIVITY ANALYSIS USING SURROGATE MODELING AND HIGH DIMENSIONAL MODEL REPRESENTATION
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 5
Edmondo Minisci, Marco Cisternino, Martin Kubicek
UTILIZING ADJOINT-BASED ERROR ESTIMATES FOR SURROGATE MODELS TO ACCURATELY PREDICT PROBABILITIES OF EVENTS
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 2
Timothy Wildey, Troy Butler
SPARSE MULTIRESOLUTION REGRESSION FOR UNCERTAINTY PROPAGATION
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 4
Daniele Schiavazzi, Gianluca Iaccarino, Alireza Doostan
A PARTIAL LEAST-SQUARES PATH MODEL FOR MULTIATTRIBUTE DECISION-MAKING UNDER FUZZY ENVIRONMENT
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 2
Chunqiao Tan, Hui Li, Xiaohong Chen