ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Uncertainty Quantification
インパクトファクター: 0.967 5年インパクトファクター: 1.301 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN 印刷: 2152-5080
ISSN オンライン: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2013005679
pages 111-132

DATA-FREE INFERENCE OF UNCERTAIN PARAMETERS IN CHEMICAL MODELS

Habib N. Najm
Sandia National Laboratories, Livermore, CA, 94551
Robert D. Berry
P.O.Box 969, MS 9051; Sandia National Laboratories, Livermore, California 94551, USA
Cosmin Safta
P.O.Box 969, MS 9051; Sandia National Laboratories, Livermore, California 94551, USA
Khachik Sargsyan
P.O.Box 969, MS 9051; Sandia National Laboratories, Livermore, California 94551, USA
Bert J. Debusschere
P.O.Box 969, MS 9051; Sandia National Laboratories, Livermore, California 94551, USA

要約

We outline the use of a data-free inference procedure for estimation of uncertain model parameters for a chemical model of methane-air ignition. The method involves a nested pair of Markov chains, exploring both the data and parametric spaces, to discover a pooled joint posterior consistent with available information. We describe the highlights of the method, and detail its particular implementation in the system at hand. We examine the performance of the procedure, focusing on the robustness and convergence of the estimated joint parameter posterior with increasing number of data chain samples. We also comment on comparisons of this posterior with the missing reference posterior density.


Articles with similar content:

PRIOR AND POSTERIOR ROBUST STOCHASTIC PREDICTIONS FOR DYNAMICAL SYSTEMS USING PROBABILITY LOGIC
International Journal for Uncertainty Quantification, Vol.3, 2013, issue 4
Alexandros Taflanidis, James L. Beck
SURROGATE PREPOSTERIOR ANALYSES FOR PREDICTING AND ENHANCING IDENTIFIABILITY IN MODEL CALIBRATION
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 4
Daniel W. Apley, Zhen Jiang, Wei Chen
Study of Convergence of One-Step Adaptive Identification Algorithms
Journal of Automation and Information Sciences, Vol.50, 2018, issue 10
Oleg G. Rudenko , Alexander A. Bezsonov , Boris D. Liberol
TIME AND FREQUENCY DOMAIN METHODS FOR BASIS SELECTION IN RANDOM LINEAR DYNAMICAL SYSTEMS
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 6
John D. Jakeman, Roland Pulch
A STOPPING CRITERION FOR ITERATIVE SOLUTION OF STOCHASTIC GALERKIN MATRIX EQUATIONS
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 3
Christophe Audouze , Pär Håkansson, Prasanth B. Nair