ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal for Uncertainty Quantification
インパクトファクター: 3.259 5年インパクトファクター: 2.547 SJR: 0.417 SNIP: 0.8 CiteScore™: 1.52

ISSN 印刷: 2152-5080
ISSN オンライン: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2014008153
pages 151-170

INFERENCE AND UNCERTAINTY PROPAGATION OF ATOMISTICALLY-INFORMED CONTINUUM CONSTITUTIVE LAWS, PART 1: BAYESIAN INFERENCE OF FIXED MODEL FORMS

Maher Salloum
Sandia National Laboratories, 7011 East Avenue, MS 9158, Livermore, California 94550, USA
Jeremy A. Templeton
Sandia National Laboratories, 7011 East Avenue, MS 9409, Livermore, California 94550, USA

要約

Uncertainty quantification techniques have the potential to play an important role in constructing constitutive relationships applicable to nanoscale physics. At these small scales, deviations from laws appropriate at the macroscale arise due to insufficient scale separation between the atomic and continuum length scales, as well as fluctuations due to thermal processes. In this work, we consider the problem of inferring the coefficients of an assumed constitutive model form using atomistic information and propagation of the associated uncertainty. A nanoscale heat transfer problem is taken as the model, and we use a polynomial chaos expansion to represent the thermal conductivity with a linear temperature dependence. A Bayesian inference method is developed to extract the coefficients in this expansion from molecular dynamics (MD) samples at prescribed temperatures. Importantly, the atomistic data are incompatible with the continuum model because of the finite probability of heat flowing in the opposite direction of the temperature gradient; we present a method to account for this in the model. The fidelity and uncertainty in these techniques are then examined. Validation is provided by comparing a continuum Fourier model against a larger all MD simulation representing the true solution.


Articles with similar content:

INFERENCE AND UNCERTAINTY PROPAGATION OF ATOMISTICALLY INFORMED CONTINUUM CONSTITUTIVE LAWS, PART 2: GENERALIZED CONTINUUM MODELS BASED ON GAUSSIAN PROCESSES
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 2
Jeremy A. Templeton, Maher Salloum
A MULTIMODES MONTE CARLO FINITE ELEMENT METHOD FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS
International Journal for Uncertainty Quantification, Vol.6, 2016, issue 5
Xiaobing Feng, Cody Lorton, Junshan Lin
THERMAL CONDUCTIVITY OF SINGLE WALL CARBON NANOTUBES: A COMPARISON OF MOLECULAR DYNAMICS SIMULATION APPROACHES
International Heat Transfer Conference 13, Vol.0, 2006, issue
Jennifer R. Lukes, H. Zhong
Multiscale Discontinuous Galerkin and Operator-Splitting Methods for Modeling Subsurface Flow and Transport
International Journal for Multiscale Computational Engineering, Vol.6, 2008, issue 1
Juergen Geiser, Shuyu Sun
ERROR AND UNCERTAINTY QUANTIFICATION AND SENSITIVITY ANALYSIS IN MECHANICS COMPUTATIONAL MODELS
International Journal for Uncertainty Quantification, Vol.1, 2011, issue 2
Sankaran Mahadevan, Bin Liang