ライブラリ登録: Guest
Critical Reviews™ in Biomedical Engineering

年間 6 号発行

ISSN 印刷: 0278-940X

ISSN オンライン: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Boolean Modeling in Quantitative Systems Pharmacology: Challenges and Opportunities

巻 47, 発行 6, 2019, pp. 473-488
DOI: 10.1615/CritRevBiomedEng.2020030796
Get accessGet access

要約

Drug research and development has a high attrition rate, with many promising drugs failing for efficacy or safety in the clinic. Increased use of detailed modeling approaches like quantitative systems pharmacology (QSP) may help in reducing overall failure rate, by helping the industry in decisions to fail early and cheaply, or to focus on patients and drug combinations that are more likely to respond or synergize, respectively. QSP offers computational methods to simulate how well different therapies may work in a patient, and therefore to better predict drug performance and reduce the cost in the development of new drug therapies. However, the development of detailed models requires a significant amount of biological data, and models often require knowledge of specific mechanisms. Coarse-grained, network-based models, such as Boolean and logic models, provide a tool for simulating complex systems without knowledge of specific mechanisms. These tools can be used to make early predictions about a biological system and can facilitate the development of more complex models. We offer a literature review of how Boolean modeling techniques are used in the identification of novel drug targets, as well as how they fall into the pipeline of developing in-depth ordinary differential equation models.

参考
  1. Woolf SH. The meaning of translational research and why it matters. JAMA. 2008;299(2):211-3. .

  2. Pietras R, Fendly B, Chazin V, Pegram M, Howell S, Slamon D. Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene. 1994;9(7):1829-38. .

  3. Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, Street SD. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving phase II survival. Drug Discov Today. 2012;17(9-10):419-24. .

  4. Waring MJ, Arrowsmith J, Leach AR, Leeson PD, Mandrell S, Owen RM, Pairaudeau G, Pennie WD, Pickett SD, Wang J, Wallace O, Weir A. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov. 2015;14(7):475-86. .

  5. Huber F, SchnauB J, Ronicke S, Rauch P, Muller K, Futterer C, Kas J. Emergent complexity of the cytoskeleton: from single filaments to tissue. Adv Phys. 2013;62(1):1-112. .

  6. Rao RT, Scherholz ML, Hartmanshenn C, Bae SA, Androulakis IP. On the analysis of complex biological supply chains: from process systems engineering to quantitative systems pharmacology. Comput Chem Eng. 2017;107:100-10. .

  7. Androulakis IP. Quantitative systems pharmacology: a framework for context. Curr Pharmacol Rep. 2016; 2(3):152-60. .

  8. Androulakis IP. Systems engineering meets quantitative systems pharmacology: from low-level targets to engaging the host defenses. Wiley Interdiscip Rev Syst Biol Med. 2015;7(3):101-12. .

  9. Saez-Rodriguez J, MacNamara A, Cook S. Modeling signaling networks to advance new cancer therapies. Annu Rev Biomed Eng. 2015;17:143-63. .

  10. Leil TA, Bertz R. Quantitative systems pharmacology can reduce attrition and improve productivity in pharmaceutical research and development. Front Pharmacol. 2014;5:247. .

  11. Geerts H, Spiros A, Roberts P, Carr R. Quantitative systems pharmacology as an extension of PK/PD modeling in CNS research and development. J Pharmacokinet Pharmacodyn. 2013;40(3):257-65. .

  12. Birtwistle M, Mager D, Gallo JM. Mechanistic vs. empirical network models of drug action. CPT Pharmacometrics Syst Pharmacol. 2013;2(9):1-3. .

  13. Zhao W, Serpedin E, Dougherty ER. Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics. 2006;22(17):2129-35. .

  14. Chudasama VL, Ovacik MA, Abernethy DR, Mager DE. Logic-based and cellular pharmacodynamic modeling of bortezomib responses in U266 human myeloma cells. J Pharmacol Exp Ther. 2015;354(3):448-58. .

  15. Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA. Logic-based models for the analysis of cell signaling networks. Biochemistry. 2010;49(15):3216-24. .

  16. Le Novere N. Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet. 2015;16(3):146-58. .

  17. Kauffman S. Homeostasis and differentiation in random genetic control networks. Nature. 1969;224(5215):177-8. .

  18. Kauffman SA. Emergent properties in random complex automata. Physica D: Nonlinear Phenomena. 1984;10(1-2):145-56. .

  19. Greil F, Drossel B, Sattler J. Critical Kauffman networks under deterministic asynchronous update. New J Phys. 2007;9(10):373. .

  20. Harvey I, Bossomaier TRJ, editors. Time out of joint: attractors in asynchronous random boolean networks. Proceedings of the Fourth European Conference on Artificial Life; Cambridge, MA: MIT Press; 1997. .

  21. Klemm K, Bornholdt S. Robust gene regulation: deterministic dynamics from asynchronous networks with delay. arXiv preprint q-bio/0309013. 2003. .

  22. Liang J, Han J. Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks. BMC Syst Biol. 2012;6(1):113. .

  23. Naldi A, Berenguier D, Faure A, Lopez F, Thieffry D, Chaouiya C. Logical modelling of regulatory networks with GINsim 2.3. Biosystems. 2009;97(2):134-9. .

  24. Mussel C, Hopfensitz M, Kestler HA. BoolNet-an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics. 2010;26(10):1378-80. .

  25. Irurzun-Arana I, Pastor JM, Troconiz IF, Gomez-Mantilla JD. Advanced Boolean modeling of biological networks applied to systems pharmacology. Bioinformatics. 2017;33(7):1040-8. .

  26. Stoll G, Caron B, Viara E, Dugourd A, Zinovyev A, Naldi A, Kroemer G, Barillot E, Calzone L. MaBoSS 2.0: an environment for stochastic Boolean modeling. Bioinformatics. 2017;33(14):2226-8. .

  27. Stoll G, Viara E, Barillot E, Calzone L. Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm. BMC Syst Biol. 2012;6(1):116. .

  28. Glass L, Kauffman SA. The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol. 1973;39(1):103-29. .

  29. Glass L, Pasternack JS. Stable oscillations in mathematical models of biological control systems. J Math Biology. 1978;6(3):207. .

  30. Novak B, Pataki Z, Ciliberto A, Tyson JJ. Mathematical model of the cell division cycle of fission yeast. Chaos. 2001;11(1):277-86. .

  31. Veliz-Cuba A, Kumar A, Josic K. Piecewise linear and boolean models of chemical reaction networks. Bull Math Biol. 2014;76(12):2945-84. .

  32. Krumsiek J, Polsterl S, Wittmann DM, Theis FJ. Odefy-from discrete to continuous models. BMC Bioinformatics. 2010;11(1):233. .

  33. Wittmann DM, Krumsiek J, Saez-Rodriguez J, Lauffenburger DA, Klamt S, Theis FJ. Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst Biol. 2009;3(1):98. .

  34. Sevim V, Gong X, Socolar JE. Reliability of transcriptional cycles and the yeast cell-cycle oscillator. PLoS Comput Biol. 2010;6(7):e1000842. .

  35. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27-30. .

  36. Kutmon M, Riutta A, Nunes N, Hanspers K, Willighagen EL, Bohler A, Melius J, Waagmeester A, Sinha SR, Miller R, Coort SL, Cirillo E, Smeets B, Evelo CT, Pico AR. WikiPathways: capturing the full diversity of pathway knowledge. Nucleic Acids Res. 2015;44(D1): D488-94. .

  37. Flobak A, Baudot A, Remy E, Thommesen L, Thieffry D, Kuiper M, Lsgreid A. Discovery of drug synergies in gastric cancer cells predicted by logical modeling. PLoS Comput Biol. 2015;11(8):e1004426. .

  38. Harris SE, Sawhill BK, Wuensche A, Kauffman S. A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity. 2002;7(4):23-40. .

  39. Lu J, Zeng H, Liang Z, Chen L, Zhang L, Zhang H, Liu H, Jiang H, Shen B, Huang M, Geng M, Spiegal S, Luo C. Network modelling reveals the mechanism underlying colitis-associated colon cancer and identifies novel combinatorial anti-cancer targets. Sci Rep. 2015;5:14739. .

  40. MacQueen J, editor. Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Oakland, CA: University of California Press; 1967. .

  41. Mircean C, Tabus I, Astola JT. Quantization and distance function selecton for discrimination of tumors using gene expression data. Proc SPIE. 2002;4623:1-2. .

  42. Yun Z, Keong KC. Dynamic algorithm for inferring qual-itative models of gene regulatory networks. Proc IEEE Comput Syst Bioinform Conf. 2004:353-62. .

  43. Knijnenburg TA, Klau GW, Iorio F, Garnett MJ, McDermott U, Shmulevich I, Wessels LFA. Logic models to predict continuous outputs based on binary inputs with an application to personalized cancer therapy. 2016;6:36812. .

  44. Erkkila T, Korpelainen T, Yli-Harja O. Inference of Boolean networks from time series data with realistic characteristics. 2007 IEEE International Workshop on Genomic Signal Processing and Statistics; 2007. .

  45. Morris MK, Melas I, Saez-Rodriguez J. Construction of cell type-specific logic models of signaling networks usng CellNOpt. Methods Mol Biol. 2013;930:179-214. .

  46. Poret A, Guziolowski C. Therapeutic target discovery using Boolean network attractors: improvements of kali. R Soc Open Sci. 2018;5(2):171852. .

  47. Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris MK, van Iersel M, Lauffenburger DA, Saez-Rodriguez J. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst Biol. 2012;6(1):133. .

  48. Ghosh S, Febin Prabhu Dass J. Non-canonical pathway network modelling and ubiquitination site prediction through homology modelling of NF-KB. Gene. 2016;581(1):48-56. .

  49. Vohradsky J, Li X-M, Dale G, Folcher M, Nguyen L, Viollier P, Thompson CJ. Developmental control of stress stimulons in Streptomyces coelicolor revealed by statistical analyses of global gene expression patterns. J Bacteriol. 2000;182(17):4979-86. .

  50. Lahdesmaki H, Shmulevich I, Yli-Harja O. On learning gene regulatory networks under the Boolean network model. Mach Learn. 2003;52(1-2):147-67. .

  51. Martin S, Zhang Z, Martino A, Faulon J-L. Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics. 2007;23(7):866-74. .

  52. Xiao Y, Dougherty ER. The impact of function perturbations in Boolean networks. Bioinformatics. 2007;23(10):1265-73. .

  53. Kauffman S, Peterson C, Samuelsson B, Troein C. Genetic networks with canalyzing Boolean rules are always stable. Proc Natl Acad Sci U S A. 2004;101(49):17102-7. .

  54. Ramo P, Kesseli J, Yli-Harja O. Perturbation avalanches and criticality in gene regulatory networks. J Theor Biol. 2006;242(1):164-70. .

  55. Shmulevich I, Kauffman SA. Activities and sensitivities in Boolean network models. Phys Rev Lett. 2004;93(4):048701. .

  56. Chaves M, Albert R, Sontag ED. Robustness and fragility of Boolean models for genetic regulatory networks. J Theor Biol. 2005;235(3):431-49. .

  57. Li F, Long T, Lu Y, Ouyang Q, Tang C. The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci U S A. 2004;101(14):4781-6. .

  58. Helikar T, Konvalina J, Heidel J, Rogers JA. Emergent decision-making in biological signal transduction networks. Proc Natl Acad Sci U S A. 2008;105(6):1913-8. .

  59. Ghanbarnejad F, Klemm K. Impact of individual nodes in Boolean network dynamics. EPL (Europhysics Letters). 2012;99(5):58006. .

  60. Trinh H-C, Kwon Y-K. Effective Boolean dynamics analysis to identify functionally important genes in large-scale signaling networks. Biosystems. 2015;137:64-72. .

  61. Klemm K, Serrano MA, Egrnluz VM, San Miguel M. A measure of individual role in collective dynamics. Sci Rep. 2012;2:292. .

  62. del Rio G, Koschutzki D, Coello G. How to identify essential genes from molecular networks? BMC Syst Biol. 2009;3(1):102. .

  63. Li S, Zhang B, Zhang N. Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst Biol. 2011;5(Suppl 1):S10. .

  64. Naldi A, Remy E, Thieffry D, Chaouiya C. A reduction of logical regulatory graphs preserving essential dynamical properties. Lect Notes Bioinformatics. 2009;5688:266-80. .

  65. Veliz-Cuba A, Stigler B. Boolean models can explain bistability in the lac operon. J Comput Biol. 2011;18(6):783-94. .

  66. Weinstein N, Mendoza L, Gitler I, Klapp J. A network model to explore the effect of the micro-environment on endothelial cell behavior during angiogenesis. Front Physiol. 2017;8:960. .

  67. Veliz-Cuba A. Reduction of Boolean network models. J Theor Biol. 2011;289:167-72. .

  68. Saadatpour A, Albert R, Reluga TC. A reduction method for Boolean network models proven to conserve attractors. SIAM J Appl Dyn Syst. 2013;12(4):1997-2011. .

  69. Naldi A, Remy E, Thieffry D, Chaouiya C. Dynamically consistent reduction of logical regulatory graphs. Theor Comput Sci. 2011;412(21):2207-18. .

  70. Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci U S A. 2003;100(21):11980-5. .

  71. Hainsworth JD, Meluch AA, Spigel DR, Barton Jr J, Simons L, Meng C, Gould B, Greco FA. Weekly docetaxel and bortezomib as first-line treatment for patients with hormone-refractory prostate cancer: a minnie pearl cancer research network phase II trial. Clin Genitourin Cancer. 2007;5(4):278-83. .

  72. Davies AM, Chansky K, Lara PN Jr, Gumerlock PH, Crowley J, Albain KS, Vogel SJ, Gandara DR; Southwest Oncology Group. Bortezomib plus gemcitabine/carbo-platin as first-line treatment of advanced non-small cell lung cancer: a phase II Southwest oncology group study (S0339). J Thorac Oncol. 2009;4(1):87-92. .

  73. Kim SJ, Yoon DH, Kang HJ, Kim JS, Park SK, Kim HJ, Lee J, Ryoo B-Y, Ko YH, Huh J, Yang WI, Kim HK, Min SK, Lee SS, Do IG, Suh C, Kim WS; Consortium for Improving Survival of Lymphoma (CISL) investigators. Bortezomib in combination with CHOP as first-line treatment for patients with stage III/IV peripheral T-cell lymphomas: a multicentre, single-arm, phase 2 trial. Eur J Cancer. 2012;48(17):3223-31. .

  74. Ekbom A, Helmick C, Zack M, Adami HO. Increased risk of large-bowel cancer in Crohn's disease with colonic involvement. Lancet. 1990;336(8711):357-9. .

  75. de Visser KE, Jonkers J. Towards understanding the role of cancer-associated inflammation in chemoresistance. Curr Pharm Des. 2009;15(16):1844-53. .

によって引用された
  1. Zhu Andy Z. X., Rogge Mark, Applications of Quantitative System Pharmacology Modeling to Model-Informed Drug Development, in Systems Medicine, 2486, 2022. Crossref

  2. Putnins M., Campagne O., Mager D. E., Androulakis I. P., From data to QSP models: a pipeline for using Boolean networks for hypothesis inference and dynamic model building, Journal of Pharmacokinetics and Pharmacodynamics, 49, 1, 2022. Crossref

  3. Androulakis Ioannis P., Teaching computational systems biology with an eye on quantitative systems pharmacology at the undergraduate level: Why do it, who would take it, and what should we teach?, Frontiers in Systems Biology, 2, 2022. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain