ライブラリ登録: Guest
Critical Reviews™ in Biomedical Engineering

年間 6 号発行

ISSN 印刷: 0278-940X

ISSN オンライン: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Efficient Finite Element Methods for Deformable Bodies in Medical Applications

巻 40, 発行 2, 2012, pp. 155-172
DOI: 10.1615/CritRevBiomedEng.v40.i2.50
Get accessGet access

要約

Simulation techniques for deformable bodies are of major relevance for a broad range of medical applications. In recent decades, a lot of work has been performed to improve simulation methods, allowing interactivity or even real time. However, this work often focused on applications such as computer games or virtual environments, where physical accuracy is not a primary goal. The goal of this report is to give an overview of efficient physics-based techniques for deformable objects, focusing on finite element methods, and to discuss the applicability of these techniques in medical scenarios. As a result, we focus on techniques that are amenable to simulating highly resolved meshes, which for instance can be generated from computed tomography (CT) or magnetic resonance (MR) images, and we review the so-called corotated finite element method that has shown a high potential in recent years. Specifically, we will capture in detail the related work in this field and demonstrate the current state of the art in efficient deformable bodies simulations.

によって引用された
  1. Duan Yuanyuan, Gonzalez Jorge A., Kulkarni Pratim A., Nagy William W., Griggs Jason A., Fatigue lifetime prediction of a reduced-diameter dental implant system: Numerical and experimental study, Dental Materials, 34, 9, 2018. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain