ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN 印刷: 0278-940X
ISSN オンライン: 1943-619X

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2017021214
pages 427-442

Design and Construction of a Heteronuclear 1H and 31P Double Tuned Coil for Breast Imaging and Spectroscopy

Sergei Obruchkov
Robinson Research Institute, Victoria University of Wellington, New Zealand
Norman B. Konyer
Imaging Research Centre, St. Josephs Healthcare, Hamilton, Ontario, Canada
Michael D. Noseworthy
McMaster School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Imaging Research Centre, St. Joseph's Healthcare, Hamilton, Ontario, Canada; Department of Radiology, McMaster University, Hamilton, Ontario, Canada; Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada

要約

Magnetic resonance imaging (MRI) is a noninvasive imaging modality that uses radio frequency (RF) energy to excite nuclei in the presence of a strong magnetic field and linear spatially encoding magnetic field gradients. Clinically, MRI takes advantage of the spin properties of hydrogen (1H) nuclei due to the high concentration and relative abundance in tissue water and fats. However, other nuclei having the quantum mechanical property of spin can also be probed. One of the most common is phosphorous (31P), which has 100% natural abundance and reasonable in vivo concentrations that are measurable at clinical MRI field strengths. Phosphorous measurements can provide an understanding of important metabolic pathways within tissues, which ultimately can help in better understanding disease and treatment. However, clinical MRIs do not routinely come with the ability to assess non-1H nuclei. Hence, hardware and pulse sequences need development, while considering the need to easily interface with standard clinical MRI hardware and protocols. This review describes the motivation for and development of MRI RF hardware designs for a human breast imaging system that can acquire 31P data from a clinically approved breast MR imaging and biopsy table.


Articles with similar content:

Changes in Apparent Rates of Receptor Binding in the Intact Brain in Relation to the Heterogeneity of Reaction Environments
Critical Reviews™ in Neurobiology, Vol.13, 1999, issue 2
Antony Gee, Osamu Inoue, Kaoru Kobayashi
Glioblastoma Heterogeneity and Cancer Cell Plasticity
Critical Reviews™ in Oncogenesis, Vol.19, 2014, issue 5
Dinorah Friedmann-Morvinski
Magnetic Resonance Elastography: Overview of Methodology and Applications
Visualization, Image Processing and Computation in Biomedicine, Vol.2, 2013, issue 1
Qiong Wu, Alyaa Elzibak, Aravinthan Jegatheesan, Elham Khosrowshahli
Modeling for Neuromonitoring Depth of Anesthesia
Critical Reviews™ in Biomedical Engineering, Vol.30, 2002, issue 1-3
Johnnie W. Huang, Rob J. Roy, Xu-Sheng Zhang
Reviews of Modeling Techniques for Neuromonitoring Depth of Anesthesia
Critical Reviews™ in Biomedical Engineering, Vol.45, 2017, issue 1-6
Johnnie W. Huang, Rob J. Roy, Xu-Sheng Zhang