ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN 印刷: 0278-940X
ISSN オンライン: 1943-619X

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2014010460
pages 309-321

The Biomechanics of ACL Injury: Progresses toward Prophylactic Strategies

Luis Carlos Hernandez Barraza
Department of Biomedical Engineering, National University of Singapore, Singapore
Gokula Krishnan. R
Department of Biomedical Engineering, National University of Singapore, Singapore
Jin-Huat Low
Department of Biomedical Engineering, National University of Singapore, Singapore
Chen-Hua Yeow
Department of Biomedical Engineering, National University of Singapore, Singapore; SINAPSE Advanced Robotics Center, National University of Singapore, Singapore

要約

Anterior cruciate ligament (ACL) injuries are highly prevalent during sporting activities. These injuries often are associated with maneuvers involving landing or sudden change in direction, which are thought to "destabilize" the knee joint and cause ACL rupture. ACL injuries can affect one's mobility and quality of life because of abnormal locomotion and consequent knee pain. This review presents key findings from prior biomechanics studies that aimed to understand ACL injury mechanisms. These studies, ranging from motion analyses and in vitro impact tests to knee finite element simulations and multibody dynamics musculoskeletal simulations, have collectively revealed the multifactorial nature of ACL injury mechanisms. Therefore, the second part of this review addresses the strong need to develop prophylactic strategies that can attenuate the factors involved in ACL injury mechanisms, such that the knee joint can be protected from ACL injuries. Previous studies have emphasized strategies such as knee bracing and strength training of important muscle groups. Although these strategies were intended to mitigate ACL injury-causing factors, their clinical outcomes remain controversial. Given the rapid progress of technologies in this area, however, the current state of uncertainty will gradually lead to prospective biomechanics research that can adopt a multifactorial approach toward protecting the ACL from injury.


Articles with similar content:

The Effects of Footwear on Lower Extremity Joint Loading: A Literature Review
Critical Reviews™ in Physical and Rehabilitation Medicine, Vol.26, 2014, issue 3-4
Mary Wills Jesse
Etiology and Biomechanics of First Metatarsophalangeal Joint Sprains (turf toe) in Athletes
Critical Reviews™ in Biomedical Engineering, Vol.40, 2012, issue 1
Michael J. Coughlin, Brent Lievers, Richard W. Kent, Robert B. Anderson, Jeff R. Crandall, Rebecca E. Frimenko
Shin Splints: Current Theories and Treatment
Critical Reviews™ in Physical and Rehabilitation Medicine, Vol.13, 2001, issue 2-3
Mark E. Batt, M.B.B. Chir, Viviane Ugalde
Biomedical Engineering Strategies for Peripheral Nerve Repair: Surgical Applications, State of the Art, and Future Challenges
Critical Reviews™ in Biomedical Engineering, Vol.39, 2011, issue 2
D. Kacy Cullen, Joseph R. Loverde, Bryan J. Pfister, Susan E. Mackinnon, Arshneel S. Kochar, Tessa Gordon
Design, Control, and Sensory Feedback of Externally Powered Hand Prostheses: A Literature Review
Critical Reviews™ in Biomedical Engineering, Vol.41, 2013, issue 2
Aimee Cloutier, James Yang