ライブラリ登録: Guest
Critical Reviews™ in Biomedical Engineering

年間 6 号発行

ISSN 印刷: 0278-940X

ISSN オンライン: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Rapid Prototyping of Two-Dimensional Non-Cartesian K-Space Trajectories (ROCKET) Using Pulseq and Graphical Programming Interface

巻 47, 発行 4, 2019, pp. 349-363
DOI: 10.1615/CritRevBiomedEng.2019029380
Get accessGet access

要約

Magnetic resonance imaging is a well-established method for diagnostics and/or prognostics of various pathological conditions. Cartesian k-space trajectory–based acquisition is the popular choice in clinical magnetic resonance imaging, owing to its simple acquisition, reconstruction schemes, and well-understood artifacts. However, non-Cartesian trajectories are relatively more time efficient, with involved methods for image reconstruction. In this review, we survey non-Cartesian trajectories from the standpoint of rapid prototyping and/or implementation. We provide examples of two-dimensional (2D) and 3D non-Cartesian k-space trajectories with analytical equations, merits, limitations, and applications. We also demonstrate implementation of three variants of the 2D radial and spiral trajectories (standard, golden angle, and tiny golden angle), using open-source software. For rapid prototyping, pulse sequences were designed with the help of Pulseq. In-vitro phantom and in-vivo brain data were acquired with three variants of radial and spiral trajectories. The obtained raw data were reconstructed using a graphical programming interface. The signal-to-noise ratios of each of these reconstructions were quantified and assessed.

参考
  1. Haacke E, Brown R, Thompson M, Venkatesan R. Magnetic resonance imaging: Physical principles and sequence design. New York: Wiley-Liss; 1999. .

  2. Zhu Y, Gao S, Cheng L, Bao S. Review: K-space trajectory development. In: 2013 IEEE International Conference on Medical Imaging Physics and Engineering; 2013 Oct 19-20; Shenyang, China. Piscataway, NJ: IEEE; 2013. pp. 356-60. .

  3. Gold GE, Thedens DR, Pauly JM, Fechner KP, Bergman G, Beaulieu CF, Macovski A. MR imaging of articular cartilage of the knee: New methods using ultrashort TEs. Am J Roentgenol. 1998 May;170(5):1223-6. .

  4. Layton KJ, Kroboth S, Jia F, Littin S, Yu H, Leupold J, Nielsen JF, Stocker T, Zaitsev M. Pulseq: A rapid and hardware-independent pulse sequence prototyping frame-work. Magn Reson Med. 2017;77(4):1544-52. .

  5. Zwart NR, Pipe JG. Graphical programming interface: A development environment for MRI methods. Magn Reson Med. 2015;74(5):1449-60. .

  6. Wright KL, Hamilton JI, Griswold MA, Gulani V, Seiberlich N. Non-Cartesian parallel imaging reconstruction. J Magn Reson Imaging. 2014;40(5):1022-40. .

  7. Wang S, Su Z, Ying L, Peng X, Zhu S, Liang F, Feng D, Liang D. Accelerating magnetic resonance imaging via deep learning. Proceedings of International Symposium on Biomedical Imaging; 2016 Apr 13-16; Prague, Czech Republic; Piscataway, NJ: IEEE; 2016. pp. 514-7. .

  8. Chagas-Neto FA, Nogueira-Barbosa MH, Lorenzato MM, Salim R, Kfuri-Junior M, Crema MD. Diagnostic performance of 3D TSE MRI versus 2D TSE MRI of the knee at 1.5 T, with prompt arthroscopic correlation, in the detection of meniscal and cruciate ligament tears. Radiol Bras Scielo. 2016;49:69-74. .

  9. Glaser C, D'Anastasi M, Theisen D, Notohamiprodjo M, Horger W, Paul D, Horng A. Understanding 3D TSE sequences: Advantages, disadvantages, and application in MSK imaging evolution of 3D sequences and technical aspects. Semin Musculoskelet Radiol. 2015;19(212): 321-7. .

  10. Keenan NG, Grasso A, Locca D, Roughton M, Gatehouse PD, Firmin DN, Pennell DJ. Comparison of 2D and multislab 3D magnetic resonance techniques for measuring carotid wall volumes. J Magn Reson Imaging. 2008;28(6):1476-82. .

  11. Johnson G, Wadghiri YZ, Turnbull DH. 2D Multislice and 3D MRI sequences are often equally sensitive. Magn Reson Med. 1999;41(4):824-8. .

  12. Lauterbur PC. Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature. 1973;242(5394):190-1. .

  13. Bernstein MA, King KF, Zhou XJ. Handbook of MRI pulse sequences. Amsterdam: Elsevier; 2004. .

  14. Kim DH, Adalsteinsson E, Spielman DM. Simple analytic variable density spiral design. Magn Reson Med. 2003;50(1):214-9. .

  15. Noll DC. Multishot rosette trajectories for spectrally selective MR imaging. IEEE Trans Med Imaging. 1997;16(4):372-7. .

  16. Scheffler K, Hennig J. Frequency resolved single-shot MR imaging using stochastic k-space trajectories. Magn Reson Med. 1996 Apr;35(4):569-76. .

  17. Pipe JG. Motion correction with PROPELLER MRI: Application to head motion and free-breathing cardiac imaging. Magn Reson Med. 1999;42(5):963-9. .

  18. Gurney PT, Hargreaves BA, Nishimura DG. Design and analysis of a practical 3D cones trajectory. Magn Reson Med. 2006;55(3):575-82. .

  19. Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO. Spiral phyllotaxis: The natural way to construct a 3D radial trajectory in MRI. Magn Reson Med. 2011;66(4):1049-56. .

  20. Pipe JG, Zwart NR, Aboussouan EA, Robison RK, Devaraj A, Johnson KO. A new design and rationale for 3D orthogonally oversampled k-space trajectories. Magn Reson Med. 2011;66(5):1303-11. .

  21. Shu Y, Riederer SJ, Bernstein MA. Three-dimensional MRI with an undersampled spherical shells trajectory. Magn Reson Med. 2006;56(3):553-62. .

  22. Thedens DR, Irarrazaval P, Sachs TS, Meyer CH, Nishimura DG. Fast magnetic resonance coronary angiography with a three-dimensional stack of spirals trajectory. Magn Reson Med. 1999 Jun;41(6):1170-9. .

  23. Bucholz EK, Song J, Johnson GA, Hancu I. Multispectral imaging with three-dimensional rosette trajectories. Magn Reson Med. 2008;59(3):581-9. .

  24. Zhou X, Liang ZP, Gewalt SL, Cofer GP, Lauterbur PC, Johnson GA. A fast spin echo technique with circular sampling. Magn Reson Med. 1998;39(1):23-7. .

  25. Jackson JI, Nishimura DG, Macovski A. Twisting radial lines with application to robust magnetic resonance imaging of irregular flow. Magn Reson Med. 1992 May;25(1):128-39. .

  26. Pipe JG. An optimized center-out k-space trajectory for multishot MRI: Comparison with spiral and projection re-construction. Magn Reson Med. 1999;42(4):714-20. .

  27. Boada FE, Gillen JS, Shen GX, Chang SY, Thulborn KR. Fast three dimensional sodium imaging. Magn Reson Med. 1997;37(5):706-15. .

  28. Mir R, Guesalaga A, Spiniak J, Guarini M, Irarrazaval P. Fast three-dimensional k-space trajector design using missile guidance ideas. Magn Reson Med. 2004;52(2):329-36. .

  29. Wu HH, Nishimura DG. 3D Magnetization-prepared imaging using a stack-of-rings trajectory. Magn Reson Med. 2010;63(5):1210-8. .

  30. Block KT, Frahm J. Spiral imaging: A critical appraisal. J Magn Reson Imaging. 2005;21(6):657-68. .

  31. Glover GH. Simple analytic spiral K-space algorithm. Magn Reson Med. 1999;42(2):412-5. .

  32. Delattre BMA, Heidemann RM, Crowe LA, Vallee JP, Hyacinthe JN. Spiral demystified. Magn Reson Imaging. 2010;28(6):862-81. .

  33. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: Sensitivity encoding for fast MRI. Magn Reson Med. 1999 Nov;42(5):952-62. .

  34. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002 Jun;47(6):1202-10. .

  35. Kadah YM, Hu X. Simulated phase evolution rewinding (SPHERE): A technique for reducing B0 inhomo-geneity effects in MR images. Magn Reson Med. 1997 Oct;38(4):615-27. .

  36. Wundrak S, Paul J, Ulrici J, Hell E, Rasche V. A small surrogate for the golden angle in time-resolved radial MRI based on generalized Fibonacci sequences. IEEE Trans Med Imaging. 2015;34(6):1262-9. .

  37. Wundrak S, Paul J, Ulrici J, Hell E, Geibel MA, Bernhardt P, Rottbauer W, Rasche V. Golden ratio sparse MRI using tiny golden angles. Magn Reson Med. 2016;75(6): 2372-8. .

  38. Stocker T, Vahedipour K, Pflugfelder D, Shah NJ. High-performance computing MRI simulations. Magn Reson Med. 2010;64(1):186-93. .

  39. Overall WR, Pauly JM. An extensible, graphical environment for pulse sequence design and simulation. Proc Int Soc Magn Reson Med 15; Berlin, Germany; 2007. p. 1652. .

  40. Benoit-Cattin H, Collewet G, Belaroussi B, Saint-Jalmes H, Odet C. The SIMRI project: A versatile and interactive MRI simulator. J Magn Reson. 2005;173(1):97-115 .

  41. Jochimsen TH, Von Mengershausen M. ODIN: Object-oriented development interface for NMR. J Magn Reson. 2004;170(1):67-78. .

  42. Magland JF, Li C, Langham MC, Wehrli FW. Pulse sequence programming in a dynamic visual environment: SequenceTree. Magn Reson Med. 2016 Jan;75(1):257-65. .

  43. Hansen MS, Serensen TS. Gadgetron: An open source framework for medical image reconstruction. Magn Reson Med. 2013;69(6):1768-76. .

  44. Uecker M, Ong F, Tamir JI, Bahri D, Virtue P, Cheng JY, Zhang T, Lustig M. Berkeley advanced reconstruction toolbox. Proc Int Soc Mag Reson Med 23. Toronto, Canada; 2015. p. 2486. .

  45. Ravi KS, Potdar S, Poojar P, Reddy AK, Kroboth S, Nielsen JF, Zaitsev M, Venkatesan R, Geethanath S. Pulseq-graphical programming interface: Open source visual environment for prototyping pulse sequences and integrated magnetic resonance imaging algorithm development. Magn Reson Imaging. 2018;52(2017):9-15. .

  46. Poojar P. Rapid prOtotyping of 2D non-CartesIan K-space trajEcTories (ROCKET) [Internet]. [cited 2018 Nov 09]. Available from: https://github.com/imr-framework/ imr-framework/tree/MATLAB/MATLAB/ROCKET/ Code. .

によって引用された
  1. Ravi Keerthi, Geethanath Sairam, Vaughan John, PyPulseq: A Python Package for MRI Pulse Sequence Design, Journal of Open Source Software, 4, 42, 2019. Crossref

  2. Bhat Seema S., Fernandes Tiago T., Poojar Pavan, Silva Ferreira Marta, Rao Padma Chennagiri, Hanumantharaju Madigondanahalli Chikkamaraiah, Ogbole Godwin, Nunes Rita G., Geethanath Sairam, Low‐Field MRI of Stroke: Challenges and Opportunities, Journal of Magnetic Resonance Imaging, 54, 2, 2021. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain