ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN 印刷: 0278-940X
ISSN オンライン: 1943-619X

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v37.i4-5.40
pages 377-398

Embryonic and Induced Pluripotent Stem Cells as a Model for Liver Disease

Hiroshi Yagi
Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
Edgar Tafaleng
1Center for Innovative Regenerative Therapies, Department of Surgery, Transplantation Section, Children's Hospital of Pittsburgh, McGowan Institute for Regenerative Medicine and University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
Masaki Nagaya
Center for Innovative Regenerative Therapies, Department of Surgery, Transplantation Section, Children's Hospital of Pittsburgh, McGowan Institute for Regenerative Medicine and University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
Marc C. Hansel
Center for Innovative Regenerative Therapies, Dept.of Surgery, Transplantation Section, Children's Hospital of Pittsburgh, McGowan Institute for Regenerative Medicine and Dept.of Pathology, University of Pittsburgh Medical School, Pennsylvania, USA
Stephen C. Strom
Center for Innovative Regenerative Therapies, Dept.of Surgery, Transplantation Section, Children's Hospital of Pittsburgh, McGowan Institute for Regenerative Medicine and Dept.of Pathology, University of Pittsburgh Medical School, Pennsylvania, USA
Ira J. Fox
Center for Innovative Regenerative Therapies, Department of Surgery, Transplantation Section, Children's Hospital of Pittsburgh, McGowan Institute for Regenerative Medicine and University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
Alejandro Soto-Gutierrez
Center for Innovative Regenerative Therapies, Department of Surgery, Transplantation Section, Children's Hospital of Pittsburgh, McGowan Institute for Regenerative Medicine and University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA

要約

Induced pluripotent stem (iPS) cells are human somatic cells that have been reprogrammed to a pluripotent state. Through several elegant technologies, we are now able to generate human iPS cells with disease genotypes that could serve as invaluable tools for human disease modeling. This could lead to an understanding of the root causes of a disease and to the development of effective prophylactic and therapeutic strategies for it. However, we are still far from generating fully functional liver cells from stem cells, including iPS cells, on in vitro culture systems. Tissue-engineering techniques have opened the window to inducing a functional fate for differentiated cells by providing a microenvironment that allows the maintenance of signals similar to those found in the natural microenvironment. Here we review the current technology to establish iPS cells and discuss strategies to generate human liver disease modeling using iPS cell technology in concert with bioengineering approaches.


Articles with similar content:

Contribution of Neural Stem Cells to Regeneration of the Central Nervous System
International Journal of Physiology and Pathophysiology, Vol.5, 2014, issue 1
Tetyana A. Pivneva, Oksana A. Rybachuk
Adipose-Derived Stromal Vascular Fraction Cells: Update on Clinical Utility and Efficacy
Critical Reviews™ in Eukaryotic Gene Expression, Vol.25, 2015, issue 2
Ki-Chul Hwang, Hyun Min Sun, Seongho Han, Sung-Whan Kim
Hard Science Versus Phenomenology in Reproductive Immunology
Critical Reviews™ in Immunology, Vol.19, 1999, issue 5-6
David A. Clark
Rat Tumor Cytogenetics: A Critical Evaluation of the Literature
Critical Reviews™ in Oncogenesis, Vol.5, 1994, issue 2-3
Hartmut M. Rabes, Rosi Kerler
Photochemical Internalization (PCI): A New Modality for Light Activation of Endocytosed Therapeuticals
Journal of Environmental Pathology, Toxicology and Oncology, Vol.25, 2006, issue 1-2
Birgit Engesater, Anette Bonsted, Anette Weyergang, Pal Kristian Selbo, Lina Prasmickaite, Andreas Dietze, Kristian Berg, Anders Hogset