ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 1.199 5年インパクトファクター: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2019029250
pages 1-12

EXPERIMENTAL AND NUMERICAL STUDY ON HEAT TRANSFER ENHANCEMENT OF HOME RADIATORS BY EMPLOYING SOLAR CELLS AND FANS

Faraz Afshari
Erzurum Technical University, Department of Mechanical Engineering, 25240, Erzurum, Turkey

要約

In the traditional heating systems, heated water in the boiler is circulated in the home radiators to warm up the ambient temperature as an air conditioning system. Generally, in the mentioned systems, the natural convection has a key role in the heat transfer from the radiator to the surroundings. The forced convection can be also applied by using air fans, and consequently the Nusselt number will be increased, which means an increase in the efficiency and heat transfer. In this work, the air fans were placed in a sample radiator to improve the thermal efficiency. The used fans are powered by batteries, and the battery supply is charged by solar cells. The fans will be able to operate at nights when the electric energy of the solar cells has been stored in the accumulator. The problem was simulated using the ANSYS Fluent software to compare the obtained numerical results to those recorded experimentally. In numerical and experimental results, an increase in heat transfer was observed. The obtained results showed that the average heat transfer rate was improved by about 21% by using forced convention.

参考

  1. Abbaspour, M., Radmanesh, A.R., and Soltani, M.R., Unsteady Flow over Offshore Wind Turbine Airfoils and Aerodynamic Loads with Computational Fluid Dynamic Simulations, Int. J. Environ. Sci. Technol., vol. 13, no. 6, pp. 1525-1540, 2016.

  2. Afshari, F., Zavaragh, H.G., and Di Nicola, G., Numerical Analysis of Ball-Type Turbulators in Tube Heat Exchangers with Computational Fluid Dynamic Simulations, Int. J. Environ. Sci. Technol., vol. 16, no. 6, 2018a. DOI: 10.1007/s13762-018-2012-4.

  3. Afshari, F., Zavaragh, H.G., Sahin, B., Grifoni, R.C., Corvaro, F., Marchetti, B., and Polonara, F., On Numerical Methods: Optimization of CFD Solution to Evaluate Fluid Flow around a Sample Object at Low Re Numbers, Math. Comput. Simul. (MATCOM), vol. 152, issue C, pp. 51-68, 2018b. DOI: 10.1016/j.matcom.2018.04.004.

  4. Angelini, G., Bonanni, T., Corsini, A., Delibra, G., Tieghi, L., and Volponi, D., Optimization of an Axial Fan for Air Cooled Condensers, Energy Procedia, vol. 126, pp. 754-761, 2017.

  5. Arteconi, A., Giuliani, G., Tartuferi, M., and Polonara, F., Characterization of a Minichannel Heat Exchanger for a Heat Pump System, J. Phys.: Conf. Ser., vol. 501, pp. 1-10, 2014.

  6. Arteconi, A., Hewitt, N.J., and Polonara, F., Domestic Demand-Side Management (DSM): Role of Heat Pumps and Thermal Energy Storage (TES) Systems, Appl. Therm. Eng., vol. 51, nos. 1-2, pp. 155-165, 2013.

  7. Aydin, D., Utlu, Z., and Kincay, O., Thermal Performance Analysis of a Solar Energy Sourced Latent Heat Storage, Renew. Sustain. Energy Rev., vol. 50, pp. 1213-1225, 2015.

  8. Bianchini, A., Balduzzi, F., Bachant, P., Ferrara, G., and Ferrari, L., Effectiveness of Two-Dimensional CFD Simulations for Darrieus VAWTS: A Combined Numerical and Experimental Assessment, Energy Convers. Manage., vol. 136, pp. 318-328, 2017.

  9. Bianco, V., Righi, D., Scarpa, F., and Tagliafico, L.A., Modeling Energy Consumption and Efficiency Measures in the Italian Hotel Sector, Energy Buildings, vol. 149, pp. 329-338, 2017.

  10. Birkhoff, G. and Gulati, S., Optimal Few-Point Discretizations of Linear Source Problems, SIAM J. Numer. Anal., vol. 11, no. 4, pp. 700-728, 1974.

  11. Emery, A.F. and Kippenhan, C.J., A Long Term Study of Residential Home Heating Consumption and the Effect of Occupant Behavior on Homes in the Pacific Northwest Constructed According to Improved Thermal Standards, Energy, vol. 31, no. 5, pp. 677-693, 2006.

  12. Fernandez-Garcia, A., Zarza, E., Valenzuela, L., and Perez, M., Parabolic-Trough Solar Collectors and Their Applications, Renew. Sustain. Energy Rev., vol. 14, no. 7, pp. 1695-1721, 2010.

  13. Giacchetta, G., Leporini, M., Marchetti, B., and Terenzi, A., Numerical Study of Choked Two-Phase Flow of Hydrocarbons Fluids through Orifices, J. Loss Prevent. Process Indust., vol. 27, pp. 13-20, 2014.

  14. Hildbrand, C., Dind, P., Pons, M., and Buchter, F., A New Solar Powered Adsorption Refrigerator with High Performance, Solar Energy, vol. 77, no. 3, pp. 311-318, 2004.

  15. Jun-Dar, C. and Shou-Shing, H., Assessment Study of Longitudinal Rectangular Plate Inserts as Tubeside Heat Transfer Augmentative Devices, Int. J. Heat Mass Transf., vol. 34, no. 10, pp. 2545-2553, 1991.

  16. Karagoz, S., Afshari, F., Yildirim, O., and Comakli, O., Experimental and Numerical Investigation of the Cylindrical Blade Tube Inserts Effect on the Heat Transfer Enhancement in the Horizontal Pipe Exchangers, Heat Mass Transf., vol. 53, no. 9, pp. 2769-2784, 2017.

  17. Kaur, A., Kumar, B., Kumar, A., Choudhary, Y., and Solanki, M., Portable Solar Washing Machine, Int. J. Recent Res. Rev., vol. 8, no. 2, pp. 29-33, 2015.

  18. Khanlari, A., Sozen, A., and Variyenli, H.I., Simulation and Experimental Analysis of Heat Transfer Characteristics in the Plate Type Heat Exchangers Using TiO2/Water Nanofluid, Int. J. Numer. Meth. Heat Fluid Flow, vol. 29, no. 4, pp. 1343-1362, 2019. DOI: 10.1108/HFF-05-2018-0191.

  19. Khanlari, A., Sozen, A., Variyenli, H.I., and Guru, M., Comparison between Heat Transfer Characteristics of TiO2/Deionized Water and Kaolin/Deionized Water Nanofluids in the Plate Heat Exchanger, Heat Transf. Res., vol. 50, no. 5, pp. 435-450, 2019.

  20. Leutenegger, S., Jabas, M., and Siegwart, R.Y., Solar Airplane Conceptual Design and Performance Estimation, J. Intell. Robotic Syst., vol. 61, nos. 1-4, pp. 545-561, 2011.

  21. Li, H., Flow Driven by a Stamped Metal Cooling Fan-Numerical Model and Validation, Exp. Therm. Fluid Sci., vol. 33, no. 4, pp. 683-694, 2009.

  22. Lung, T.B. and Roe, P.L., Toward a Reduction of Mesh Imprinting, Int. J. Numer. Meth. Fluids, vol. 76, no. 7, pp. 450-470, 2014.

  23. Maiga, S.E.B., Palm, S.J., Nguyen, C.T., Roy, G., and Galanis, N., Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows, Int. J. Heat Fluid Flow, vol. 26, no. 4, pp. 530-546, 2005.

  24. Mokrani, O., Bourouga, B., Castelain, C., and Peerhossaini, H., Fluid Flow and Convective Heat Transfer in Flat Microchannels, Int. J. Heat Mass Transf., vol. 52, no. 5, pp. 1337-1352, 2009.

  25. Paramane, S.B., Joshi, K., Van der Veken, W., and Sharma, A., CFD Study on Thermal Performance of Radiators in a Power Transformer: Effect of Blowing Direction and Offset of Fans, IEEE Trans. Power Delivery, vol. 29, no. 6, pp. 2596-2604, 2014.

  26. Sahdev, R., Kumar, M., and Dhingra, A.K., Forced Convection Greenhouse Groundnut Drying: An Experimental Study, Heat Transf. Res., vol. 49, no. 4, pp. 309-325, 2018.

  27. Sozen, A., Qiftfi, E., Kejel, S., Guru, M., Variyenli, H.I., and Karakaya, U., Usage of a Diatomite-Containing Nanofluid as the Working Fluid in a Wickless Loop Heat Pipe: Experimental and Numerical Study, Heat Transf. Res., vol. 49, no. 17, pp. 1721-1744, 2018.

  28. Sozen, A., Variyenli, H.I., Ozdemir, M.B., and Guru, M., Upgrading the Thermal Performance of Parallel and Crossflow Concentric Tube Heat Exchangers Using MgO Nanofluid, Heat Transf. Res., vol. 48, no. 5, pp. 419-434, 2017.

  29. Tian, Y. and Zhao, C.Y., A Review of Solar Collectors and Thermal Energy Storage in Solar Thermal Applications, Appl. Energy, vol. 104, pp. 538-553, 2013.

  30. Trillat-Berdal, V., Souyri, B., and Fraisse, G., Experimental Study of a Ground-Coupled Heat Pump Combined with Thermal Solar Collectors, Energy Build., vol. 38, no. 12, pp. 1477-1484, 2006.

  31. Wamborikar, Y.S. and Sinha, A., Solar Powered Vehicle, Proc. World Congress Eng. Comput. Sci., vol. 2, pp. 20-22, 2010.


Articles with similar content:

CONVECTION SUPPRESSION IN AN ATTIC SHAPED ENCLOSURE
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Timothy Anderson, James Carson, Mike Duke
A THERMAL DESIGN APPROACH FOR NATURAL AIR COOLED ELECTRONICS EQUIPMENT CASINGS
Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV, Vol.0, 2000, issue
Masaru Ishizuka
EXPERIMENTAL INVESTIGATION ON THE HEAT TRANSFER PERFORMANCE OF HEAT PIPES IN COOLING HEV LITHIUM-ION BATTERIES
Heat Transfer Research, Vol.49, 2018, issue 17
Mohd Zulkifly Abdullah, Mohd A. Ismail, Faiza M. Nasir
NUMERICAL AND EXPERIMENTAL STUDY OF GROUND-COUPLED HEAT PUMPS COMBINED WITH THERMAL SOLAR COLLECTORS
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Gilbert Achard, Bernard Souyri, Gilles Fraisse
Applications
NUMERICAL SIMULATION OF THE PERFORMANCE OF A CAPILLARY THERMAL DRIVEN EJECTOR REFRIGERATOR

ICHMT DIGITAL LIBRARY ONLINE, Vol.11, 2004, issue
M. H. Shi, X. C. Wang, H. Cai