ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 1.199 5年インパクトファクター: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2019029768
pages 41-56

EFFECTS OF COOLING TUBES ON CONJUGATE HEAT AND MASS TRANSFER IN A HEXAGONAL PARALLEL-PLATE MEMBRANE CHANNEL

Si-Min Huang
Key Laboratory of Distributed Energy Systems of Guangdong Province, Department of Energy and Chemical Engineering, Dongguan University of Technology, Dongguan 523808, People's Republic of China
Dai-Wei Du
Guangdong Provincal Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
Liehui Xiao
Guangdong Provincal Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
Wu-Zhi Yuan
Guangdong Provincal Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
Bing Hu
Guangdong Provincal Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
Shimin Kang
Guangdong Provincal Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China

要約

An internally cooled hexagonal parallel-plate membrane contactor is developed and used to study the conjugate heat and mass transfer under the effects of cooling tubes. The contactor is comprised of a series of internally cooled hexagonal parallel-plate membrane channels (IHPMC). A mathematical model is established in a unit cell including a hexagonal plate membrane, an adjacent air channel and a solution (liquid desiccant) channel with several cooling tubes. The air and the solution streams are in an arrangement combined with counterflow and crossflow. The cooling tubes are installed in the solution side, while the water flows in the counterflow arrangement to take away the sensible heat of the solution generated by absorbing the water vapor. The partial differential equations for describing the fluid flow and heat and mass transfer are established and numerically solved. The friction factors, Nusselt numbers, and Sherwood numbers are then obtained and analyzed. Influences of the tube number Ntube, tube outer diameters douter, and Reynolds numbers Re on the IHPMC under the conjugate heat and mass transfer boundary conditions are investigated. It can be found that the tube numbers and the tube outer diameters have negligible influences on the mean Nusselt numbers and the Sherwood numbers for the air stream, while their effects on the solution are large. The friction factors and the Nusselt numbers for the water stream are nearly independent of the various tubes inside the solution channels.

参考

  1. Abdel-Salam, M.R.H., Besant, R.W., and Simonson, C.J., Design and Testing of a Novel 3-Fluid Liquid-to-Air Membrane Energy Exchanger (3-Fluid LAMEE), Int. J. Heat Mass Trans/., vol. 92, pp. 312-329, 2016a.

  2. Abdel Salam, M.R.H., Besant, R.W., and Simonson, C.J., Performance Testing of 2 Fluid and 3 Fluid Liquid-to-Air Membrane Energy Exchangers for HVAC Applications in Cold Dry Climates, Int. J. Heat Mass Trans/., vol. 106, pp. 558-569, 2017.

  3. Abdel-Salam, M.R.H., Besant, R.W., and Simonson, C.J., Performance Testing of a Novel 3-Fluid Liquid-to-Air Membrane Energy Exchanger (3-Fluid LAMEE) under Desiccant Solution Regeneration Operating Conditions, Int. J. Heat Mass Trans/., vol. 95, pp. 773-786, 2016b.

  4. Abdel-Salam, M.R.H., Besant, R.W., and Simonson, C.J., Sensitivity of the Performance of a Flat-Plate Liquid-to-Air Membrane Energy Exchanger (LAMEE) to the Air and Solution Channel Widths and Flow Maldistribution, Int. J. Heat Mass Trans/., vol. 84, pp. 1082-1100, 2015.

  5. Abdel-Salam, M.R.H., Ge, G., Besant, R.W., and Simonson, C.J., Experimental Study of Effects of Phase Change Energy and Operating Parameters on Performances of Two-Fluid and Three-Fluid Liquid-to-Air Membrane Energy Exchangers, ASHRAE Trans, vol. 122, pp. 134-145, 2016c.

  6. Bai, H., Zhu, J., Chen, Z., Ma, L., Wang, R., and Li, T., Performance Testing of a Cross-Flow Membrane-Based Liquid Desiccant Dehumidification System, Appl. Therm. Eng., vol. 119, pp. 119-131, 2017.

  7. COMSOL Multiphysics, User Guide Version 4.3 a, Burlington, MA: COMSOL Inc., 2012.

  8. Conde, M.R., Properties of Aqueous Solutions of Lithium and Calcium Chlorides: Formulations for Use in Air Conditioning Equipment Design, Int. J. Therm. Sci., vol. 43, no. 4, pp. 367-382, 2004.

  9. Daisey, J.M., Angell, W.J., and Apte, M.G., Indoor Air Quality, Ventilation and Health Symptoms in Schools: An Analysis of Existing Information, Indoor Air, vol. 13, no. 1, pp. 53-64, 1999.

  10. Das, R.S. and Jain, S., Performance Characteristics of Cross-Flow Membrane Contactors for Liquid Desiccant Systems, Appl. Energy, vol. 141, pp. 1-11, 2015.

  11. Gao, W.Z., Liu, J.H., Cheng, Y.P., and Zhang, X.L., Experimental Investigation on the Heat and Mass Transfer Between Air and Liquid Desiccant in a Cross-Flow Dehumidifier, Renew. Energy, vol. 37, no. 1, pp. 117-123, 2012.

  12. Ge, T.S., Dai, Y.J., and Wang, R.Z., Experimental Comparison and Analysis on Silica Gel and Polymercoated Fin-Tube Heat Exchangers, Energy, vol. 35, no. 7, pp. 2893-290, 2010.

  13. Ho, C.D., Chen, L., Li-Chen, Liou, J.W., and Jen, L.Y., Theoretical and Experimental Studies of CO2 Absorption by the Amine Solvent System in Parallel-Plate Membrane Contactors, Sep. Purif. Technol, vol. 198, pp. 128-136, 2016. DOI: 10.1016/j. seppur.2016.11.070.

  14. Huang, S.M., Hong, Y.X., and Qin, F.G.F., Fluid Flow and Heat Transfer in Hexagonal Parallel-Plate Membrane Channels (HPMC): Effects of the Channel Heights and Fluid Parameters, Appl. Therm. Eng., vol. 93, pp. 8-17, 2016.

  15. Huang, S.M., Qiu, D., Huang, W., Yang, M., and Xiao, H., Laminar Flow and Heat Transfer in a Quasi-Counter Flow Parallel-Plate Membrane Channel in the Solution Side with Cooling Tubes, Int. J. Heat Mass Transf., vol. 105, pp. 769-780, 2017.

  16. Huang, S.M., Yang, M., Chen, B., Jiang, R., Qin, F.G.F., and Yang, X., Laminar Flow and Heat Transfer in a Quasi-Counter Flow Parallel-Plate Membrane Channel (QCPMC), Int. J. Heat Mass Transf, vol. 86, pp. 890-897, 2015.

  17. Huang, S.M., Yang, M., and Yang, X., Performance Analysis of a Quasi-Counter Flow Parallel-Plate Membrane Contactor Used for Liquid Desiccant Air Dehumidification, Appl. Therm. Eng., vol. 63, no. 1, pp. 323-332, 2014.

  18. Huang, S.M., Zhang, L.Z., Tang, K., and Pei, L.X., Fluid Flow and Heat Mass Transfer in Membrane Parallel-Plates Channels Used for Liquid Desiccant Air Dehumidification, Int. J. Heat Mass Transf., vol. 55, nos. 9-10, pp. 2571-2580. 2012a.

  19. Huang, S.M., Zhang, L.Z., Tang, K., and Pei, L.X., Turbulent Heat and Mass Transfer across a Hollow Fiber Membrane Module in Liquid Desiccant Air Dehumidification, J. Heat Trans.-Transf. ASME, vol. 134, no. 8, 2012b. DOI: 10.1115/1.4006208.

  20. Huang, S.M., Zhang, L.Z., and Yang, M., Conjugate Heat and Mass Transfer in Membrane Parallel-Plates Ducts for Liquid Desiccant Air Dehumidification: Effects of the Developing Entrances, J. Membr. Sci., vol. 437, no. 437, pp. 82-89, 2013.

  21. Incropera, F.P. and Dewitt, D.P., Introduction to Heat Transfer, 3rd Ed., New York: John Wiley & Sons, 1996.

  22. Kays, W.M. and Crawford, M.E., Convective Heat and Mass Transfer, 3rd Ed., New York: McGraw-Hill, 1990.

  23. Mahmud, K., Mahmood, G.I., Simonson, C.J., and Besant, R.W., Performance Testing of a Counter-Cross-Flow Run-Around Membrane Energy Exchanger (RAMEE) System for HVAC Applications, Energy Build., vol. 42, no. 7, pp. 1139-1147, 2010.

  24. Patil, K.R., Tripathi, A.D., Pathak, G.S., and Katti, S.S., Thermodynamic Properties of Aqueous Electrolyte Solutions. 1. Vapor Pressure of Aqueous Solutions of Lithium Chloride, Lithium Bromide, and Lithium Iodide, J. Chem. Eng. Data, vol. 35, no. 2, pp. 166-168, 2002.

  25. Perez-Lombard, L., Ortiz, J., and Pout, C., A Review on Buildings Energy Consumption Information, Energy Build., vol. 40, pp. 394-398, 2008.

  26. Qiu, D., Wu, Z., Huang, S.M., Ye, W.B., Chen, X., Luo, J., and Yang, M., Laminar Flow and Heat Transfer in an Internally-Cooled Hexagonal Parallel-Plate Membrane Channel (IHPMC), Appl. Therm. Eng., vol. 124, pp. 767-780, 2017.

  27. Shah, R.K. and London, A.L., Laminar Flow Forced Convection in Ducts, New York: Academic Press Inc., 1978.

  28. Vali, A., Ge, G., Besant, R.W., and Simonson, C.J., Numerical Modeling of Fluid Flow and Coupled Heat and Mass Transfer in a Counter-Cross-Flow Parallel-Plate Liquid-to-Air Membrane Energy Exchanger, Int. J. Heat Mass Transf., vol. 89, pp. 1258-1276, 2015.

  29. Zhang, W.K., Yang, M., Chen, J., Tao, S., Huang, X., Hu, B., and Huang, S.M., Quasi-Counter Flow Parallel-Plate Membrane Contactors (QCPMC) for Liquid Desiccant Air Dehumidification: Conjugate Heat and Mass Transfer, Int. J. Therm. Sci., vol. 134, pp. 665-672, 2018.


Articles with similar content:

JEFFREY FLUID IMPACT ON MHD FREE CONVECTIVE FLOW PAST A VERTICALLY INCLINED PLATE WITH TRANSFER EFFECTS: EFGM SOLUTIONS
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 3
Rallabandi Srinivasa Raju, M. Anil Kumar, Rama Subba Reddy Gorla, Gurejala Jithender Reddy
CONJUGATE HEAT AND MASS TRANSFER IN A QUASI-COUNTER FLOW PARALLEL-PLATE MEMBRANE CHANNEL (QCPMC)
International Heat Transfer Conference 16, Vol.14, 2018, issue
Si-Min Huang, Xiaoxi Yang, Wen-Kai Zhang, Minlin Yang
COMBINED FREE AND FORCED CONVECTION IN A VERTICAL AND INCLINED CYLINDRICAL ANNULUS
International Heat Transfer Conference 8, Vol.3, 1986, issue
D. Bohne , E. Obermeier
STEFAN BLOWING, NAVIER SLIP, AND RADIATION EFFECTS ON THERMO-SOLUTAL CONVECTION FROM A SPINNING CONE IN AN ANISOTROPIC POROUS MEDIUM
Journal of Porous Media, Vol.19, 2016, issue 7
Tasveer A. Beg, Mohammed Jashim Uddin, O. Anwar Bég
THERMODYNAMIC ANALYSIS OF HALL CURRENT AND SORET NUMBER EFFECT ON HYDROMAGNETIC COUETTE FLOW IN A ROTATING SYSTEM WITH A CONVECTIVE BOUNDARY CONDITION
Heat Transfer Research, Vol.51, 2020, issue 1
Malapati Venkateswarlu, Oluwole Daniel Makinde, D. V. Lakshmi