ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v41.i5.10
pages 493-508

Influence of Torsion on the Laminar Flow and Convective Heat Transfer in Coiled Tubes Arranged in a Rectangular Pattern

I. Conte
Laboratory of Phase Change and Interfacial Transport Phenomena, Department of Thermal Engineering, Tsinghua University, Beijing 100084
Xiao-Feng Peng
Laboratory of Phase Change and Interfacial Transport Phenomena, Department of Thermal Engineering, Tsinghua University, Beijing 100084
Antonio Campo
Department of Mechanical Engineering, The University of Vermont, Burlington, VT 05405, USA

要約

A detailed numerical investigation has been undertaken to understand the intricacies of laminar forced flows with convective heat transfer inside coiled tubes of circular cross section. The coiled tubes consist of two straight parts and two bends which are arranged in a rectangular pattern. The laminar flows are characterized by three different Reynolds numbers: Re = 300, 700, and 1400. Computer simulations to calculate the laminar velocity and temperature fields were performed for four coiled tubes having different bend torsion ratios. Compared to the coiled tubes near the entrance of the first bend, the rotation experienced by the fluid motion due to torsion is less significant in the second bend. This behavior is attributable to the flow redevelopment in the upstream straight tube. The numerical results demonstrate a vigorous fluid rotation for flows possessing higher velocities whose magnitudes are given by Re = 700 and 1400. The flow path in the bend is representative of a typical flow near the entrance region of a helically coiled tube. The numerical predictions agree well with those results generated by numerical computations and experimental observations. Overall, the heat transfer coefficient decreases with increments in the bend torsion; this behavior is caused primarily by the weakening in the secondary flows.