ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018019759
pages 787-802

NUMERICAL STUDY OF THE EFFECT OF SIDE-WALL INCLINATION ANGLES ON NATURAL CONVECTION IN A 3D TRAPEZOIDAL ENCLOSURE FILLED WITH TWO-LAYER NANOFLUID AND AIR

Mahmoud Salari
Department of Mechanical Engineering, Imam Hossein University, Tehran, Iran
Masoud Hasani Malekshah
Department of Mechanical Engineering, Imam Hossein University, Tehran, Iran
Emad Hasani Malekshah
Faculty of Engineering, Department of Mechanical Engineering, University of Isfahan, Hezar Jerib Avenue, Isfahan 81746-73441, Iran; Department of Mechanical Engineering, Imam Hossein University, Tehran, Iran

要約

The influences of side-wall inclination angles of a trapezoidal enclosure filled with two-layer fluids (air and MWCNT–water nanofluid) heated partially from inclined walls on natural convection are investigated numerically. The inclination angles of the side walls varied in a small range of –4.3° ≤ Φ ≤ 4.3° which respectively corresponded to the aspect ratio variation of 0.4 < AR < 1.6 for a trapezoidal enclosure. The simulations were performed for the Rayleigh numbers 103Ra ≤ 106 and solid volume fractions φ = 0.004 and 0.001. The streamlines, isotherms, local and average Nusselt numbers, and dimensionless velocity in the 3D trapezoidal enclosure are presented. The results show that the aspect ratios or the inclination angles of side walls have considerable effects on the fluid flow and heat transfer characteristics. Also, the local and average Nusselt numbers are increased with increasing inclination angles of side walls, solid volume fractions, and Rayleigh numbers.


Articles with similar content:

MIXED CONVECTION FLOW AND HEAT TRANSFER IN A VENTILATED INCLINED CAVITY CONTAINING HOT OBSTACLES SUBJECTED TO A NANOFLUID
Heat Transfer Research, Vol.45, 2014, issue 4
Seyed Sadegh Mirtalebi Esforjani, Mohammad Akbari, Mohammad Hemmat Esfe, Sina Niazi
FREE CONVECTION AND ENTROPY GENERATION IN A CuO/WATER NANOFLUID-FILLED TRIANGULAR CHANNEL WITH SINUSOIDAL WALLS
Heat Transfer Research, Vol.50, 2019, issue 11
Alireza Rahimi, Abbas Kasaeipoor, Emad Hasani Malekshah, Navid Vafa, Morteza Bayati, Hamidreza Khakrah
NUMERICAL STUDY OF A MIXED CONVECTION OF NANOFLUID IN A CAVITY FILLED WITH A POROUS MEDIUM FOR DIFFERENT LOCATIONS OF THE HEAT SOURCES
Second Thermal and Fluids Engineering Conference, Vol.41, 2017, issue
Ali Al-Zamily
SIMULATION OF NATURAL CONVECTION OF AN Al2O3/WATER NANOFLUID IN A COMPLEX WAVY-WALL CAVITY USING THE LATTICE BOLTZMANN METHOD
Heat Transfer Research, Vol.50, 2019, issue 15
Alireza Shahriari, Mohammad Rahnama, Ebrahim Jahanshahi Javaran
NATURAL CONVECTION HEAT TRANSFER WITHIN A SECTOR-SHAPED CAVITY
International Heat Transfer Conference 10, Vol.18, 1994, issue
Sun Sok Kwon, Han Shik Chung, Tae Yeol Bae