ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014005471
pages 1-11

STRAIN RATE EFFECT ON MICROORGANIC DUST FLAME IN A PREMIXED COUNTERFLOW

Mehdi Bidabadi
Department of Mechanical Engineering, Department of Energy Conversion, Combustion and Heat Transfer Modeling Laboratory, Iran University of Science and Technology, Tehran, Iran
Moslem Akbari Vakilabadi
Shahid Beheshti University
Ali Esmaeilnejad
School of Mechanical Engineering, Department of Energy Conversion, Combustion Research Laboratory, Iran University of Science and Technology, Narmak, Tehran, 16887, Iran

要約

In this study, the role of strain rate and different particle diameters on the counterflow premixed flame propagation through microorganic dust particles is investigated. In order to simulate the combustion process, the flame structure is composed of three zones: a preheated vaporization zone, a reaction zone, and finally a postflame zone, respectively. Then the governing equations, required boundary conditions, and matching conditions are applied for each zone in order to solve these differential equations. Consequently, the important parameters of the phenomenon of combustion of organic dust particles in premixed counterflow, such as organic dust mass fraction, flame location, are plotted as a function of strain rate at various particle diameters.

参考

  1. Bidabadi, M., Haghiri, A., and Rahbari, A. , The effect of Lewis and Damköhler numbers on the flame propagation through microorganic dust particles.

  2. Blevins, L. G. and Gore, J. P. , Computed structure low strain rate partially premixed CH<sub>4</sub>/air counterflow fl ames: implication for NO formation.

  3. Daou, J. , Strained premixed fl ames: Effect of heat-loss, preferential diffusion and reversibility of the reaction.

  4. Essenhigh, R. H. and Csaba, J. , The thermal radiation theory for plane fl ame propagation in coal dust clouds.

  5. Hayashi, J. and Watanabe, H. , Effects of fuel droplet size on soot formation in spray flames formed in a laminar counterflow.

  6. Liu, S., Hewson, J. C., Che, J. H., and Pitsch, H. , Effects of strain rate on high-pressure nonpremixed n-heptane autoignition in counterflow.

  7. Seshadri, K., Berlad, A. L., and Tangirala, V. , The structure of premixed particle-cloud flames.

  8. Williams, F. A. , Combustion Theory, 2nd ed.


Articles with similar content:

Numerical modelling of an Opposite Wall Fired Furnace - Effect of Operating Conditions
ICHMT DIGITAL LIBRARY ONLINE, Vol.12, 2005, issue
R. Vuthaluru, H. B. Vuthaluru
COMBUSTION BEHAVIOR OF LUMPY COKE IN PACKED BED IN A COUNTER CURRENT AIR FLOW
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.3, 2018, issue
Fabian Herz, Eckehard Specht, Bassem Hallak, N. Linn
ON PRESSURIZED FUNCTIONALIZED PARTICLE-LADEN FLUID INFILTRATION INTO POROUS MEDIA
International Journal for Multiscale Computational Engineering, Vol.17, 2019, issue 2
Eduardo M. B. Campello, Tarek I. Zohdi
FLOW PAST POROUS SPHERICAL SHELL WITH RADIAL VARIATION OF PERMEABILITY
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 3
Vineet Kumar Verma, pawan kumar dixit
PREDICTION OF GAS-PARTICLE FLOWS AND GAS COMBUSTION IN A CYCLONE FURNACE
Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV, Vol.0, 2000, issue
Cheong-ki Chan, Yin-cheng Guo