ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v36.i3.10
pages 151-169

Predictive Control of a Humidifying Process Modelled on Reproducing Kernel Hilbert Spaces

El Aissi
Institut Supérieur des Etudes Technologiques de Sousse, Cité Erriadh Sousse, France
Hassani Messaoud
Research Unit ATSI, National School of Engineers of Monastir, University of Monastir, Rue Ibn El Jazzar, 5019 Monastir, Tunisia

要約

This paper focuses on the Model Based Predictive Control (MBPC) of the humidifying process inside a drying blower. This process is known to have a nonlinear behavior. To synthesize the MBP control, we used a Reproducing Kernel Hilbert Space (RKHS) model with reduced complexity. The identification of this model is carried in a black box context with no a priori information needed, using the Statistical Learning Techniques (SLT). This model is linear with respect to its parameters and copes well with the nonlinear systems approximation problems. The proposed algorithm is used to regulate the humidity inside a drying blower.