ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2012005855
pages 573-590

NUMERICAL PREDICTIONS OF PRESSURE DROP AND HEAT TRANSFER IN A BLADE INTERNAL COOLING PASSAGE WITH CONTINUOUS/TRUNCATED RIBS

Shian Li
Engineering Simulation and Aerospace Computing (ESAC), Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China; Department of Energy Sciences, Lund University
Gongnan Xie
Department of Mechanical and Power Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
Weihong Zhang
Laboratory of Engineering Simualtion and Aerospace Computing (ESAC), Northwestern Polytechnical University, P.O.Box 552, 710072, Xi'an, Shaanxi, China
Bengt Sunden
Division of Heat Transfer, Department of Energy Sciences, Lund University, P.O. Box 118, SE-22100, Lund, Sweden

要約

Ribs are often used in the mid-section of internal turbine blades to augment heat transfer from the blade wall to a coolant, but most research works are concerned only with continuous ribs attached to the side walls. In this paper, a turbulent flow and heat transfer of a rectangular passage with continuous and truncated ribs on opposite walls have been predicted numerically. Two types of ribs are studied: 90-deg ribs and 45-deg V-shaped ribs. The inlet Reynolds numbers range from 12,000 to 60,000. The complex three-dimensional turbulent flows inside the blade internal coolant passage and heat transfer between the rib-walls and side-walls are presented. The overall performances of six different ribbed passages are evaluated and compared. Numerical results show that the passage with truncated V-shaped ribs is very effective in improving the heat transfer performance with a low pressure drop.