ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v36.i4.50
pages 311-318

Enhancement of Heat Transfer in a Short Rectangular Channel with Substantial Deflection of Inlet Velocity from Axial Direction

Ronald S. Bunker
GE Global Research, General Electric, Niskayuna, NY, USA
Mikhail Ya. Belenkiy
JSC "I. I. Polzunov Central Boiler and Turbine Institute" (NPO TsKTI), St. Petersburg, 195257, Russia
Mikhail Gotovskii
I. I. Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO TsKTI), 3/6 Atamanskaya Str., St. Petersburg, 191167, Russia
B. S. Fokin
JSC "I. I. Polzunov Central Boiler and Turbine Institute" (NPO TsKTI), St. Petersburg, 195257, Russia

要約

Experimental and theoretical investigation of heat transfer and hydrodynamics of a heated short rectangular channel which is an element of a header system with a plane rectangular header of constant cross section is carried out. Depending on the position of the inlet into the channel relative to the inlet section of the supply header, the flow rate and flow inlet angle as well as the total velocity of the flow change in the header, which is associated with the presence of a transit flow through the supply header. The indicated factors exert a substantial influence on the heat transfer coefficients in the channel. For a more correct comparison of experimental data with the case of an axial inlet, heat transfer in the test channel was also determined in the absence of the transit flow, i.e., practically for the case of an axial inlet. On maximum deviation of the flow inlet angle from the axial one, an increase in the rate of heat transfer in comparison with the axial inlet was from 60% to 100%.


Articles with similar content:

EFFECT OF MAINSTREAM ACCELERATION ON ADIABATIC WALL TEMPERATURE AND HEAT TRANSFER DOWNSTREAM OF GAS INJECTION
International Heat Transfer Conference 6, Vol.5, 1978, issue
M. Y. Jabbari, Richard J. Goldstein
Two-Phase Refrigerant Distribution in a Parallel-Flow Heat Exchanger
Journal of Enhanced Heat Transfer, Vol.17, 2010, issue 1
D. Y. Kim, Nae-Hyun Kim
SUBCOOLED FLOW BOILING HEAT TRANSFER CHARACTERISTICS OF R134A IN HORIZONTAL HELICALLY COILED TUBES
Journal of Enhanced Heat Transfer, Vol.22, 2015, issue 4
Gang Lei, Lingjian Kong, Kewei Xing, Ri Li, Changnian Chen, Jitian Han
SIMULATION OF A CONJUGATE PROBLEM OF FRICTION AND HEAT TRANSFER IN TRANSPIRATION COOLING OF GAS TURBINE BLADES
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.19, 2015, issue 2
Omair Alhatim
Heat Transfer Enhancement in a Channel Flow by Rectangular Blocks
International Heat Transfer Conference 12, Vol.47, 2002, issue
Sinan Yapici, Turgay Pekdemir, Osman Nuri Sara