ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 1.199 5年インパクトファクター: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v33.i1-2.140
17 pages

Natural Convection in a Porous Rectangular Duct - the Brinkman Model

D. V. Krishna
Department of Mathematics, Sri Krishnadevaraya University, Anantapur, India
D. V. Prasada Rao
Department of Mathematics, Sri Krishnadevaraya University, Anantapur, India

要約

The study of buoyancy driven convection How and heat transfer in a porous medium has gained importance owing to its application in the development of geothermal technology, drying technology, insulation technology and many other technological fields. Convective heat transfer in a rectangular porous duct with differentially heated sidewalls is a problem, which has received attention by many investigators. In this paper we discuss the said problem using finite element analysis. The governing nonlinear coupled equations for the momentum and temperature under the Brinkman's model are obtained in terms of the stream function and the temperature. The Galerkin method with eight node serendipity elements is used to obtain the coupled global matrices. These coupled matrices are solved using iterative procedure. The behavior of velocity, temperature and the Nusselt number is discussed computationally for different values of governing parameters, viz., the Grashof number, the Darcy parameter, and the Prandtl number. It is observed that in a two-dimensional convection now through a sparsely packed porous medium, the resultant velocity at any position in the given duct enhances with in crease in either the permeability of the medium or the thermal buoyancy acting on the fluid. In a given duct the influence of the thermal buoyancy exhibits a critical value for G. It is also interesting to know that irrespective of the aspect ratio of the duct, the values of Nusselt number exhibit in variance for all G in low-permeable media. In all ducts with moderate permeability the Nusselt number exhibits a hysteresis behavior for G greater than a critical value.


Articles with similar content:

WALL EFFECTS ON MASS TRANSFER FROM A FLUID SPHERE FALLING IN POWER-LAW FLUIDS AT FINITE REYNOLDS NUMBERS
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Rajenda P. Chhabra, M. Trivedi
DEVELOPMENT OF LAMINAR MIXED CONVECTION IN VERTICAL SEMICIRCULAR DUCTS
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Yousef El Hasadi, N. A. Elsharif, A. A. Busedra
Hydrodynamic and Thermal Behavior of Gas Flow in Microchannels Filled with Porous Media
Journal of Porous Media, Vol.9, 2006, issue 5
O. M. Haddad, Yazan Taamneh, Moh'd Ahmad Al-Nimr
SORET AND DUFOUR EFFECTS ON MHD NATURAL CONVECTIVE HEAT AND SOLUTE TRANSFER IN A FLUID-SATURATED POROUS CAVITY
Journal of Porous Media, Vol.19, 2016, issue 8
Naikoti Kishan, Ali J. Chamkha, Balla Chandra Shekar
HYDROMAGNETIC CONVECTION FLOW IN TWO IMMISCIBLE FLUIDS THROUGH A POROUS MEDIUM IN AN INCLINED ANNULUS
Journal of Porous Media, Vol.20, 2017, issue 11
Jafar Hasnain, Zaheer Abbas