ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018025932
pages 899-920

INFLUENCE OF LONGITUDINAL HEAT CONDUCTION EFFECTS IN A HEAT SINK OVER THE THERMAL CREEP IN A MICROCHANNEL: CONJUGATE HEAT TRANSFER MECHANISM

I. G. Monsivais
Departamento de Termofluidos, Facultad de Ingenieria, UNAM. México, D.F. 04510, Mexico
J. J. Lizardi
Colegio de Ciencia y Tecnologia, Universidad Autónoma de la Ciudad de México, Campus San Lorenzo Tezonco, Calle Prolongación San Isidro 151, 09790, Mexico
Federico Mendez
Departamento de Termofluidos, Facultad de Ingenieria, UNAM. México, D.F. 04510, Mexico
Faculty of Engineering

要約

In this work, we use asymptotic and numerical techniques to analyze the conjugated heat transfer between a rarified gas flow and the lower wall of a thin horizontal microchannel exposed to a uniform heat flux, when the laminar motion of the gas is only caused by the thermal creep or transpiration effect on the lower wall of the microchannel. The surface temperature of the lower wall is unknown and must be determined as a part of the problem. Therefore, we can assume that the lower face of this heat sink with finite values of the thermal conductivity and thickness is exposed to a uniform heat flux, while the upper wall of the microchannel is subjected to a prescribed thermal boundary condition. The resulting governing equations are written in dimensionless form, assuming that the Reynolds number associated with the characteristic velocity of the thermal creep and the aspect ratio of the microchannel, are both very small. The velocity and temperature profiles of the gas phase and the temperature profile of the solid wall are determined as functions of the involved dimensionless parameters, and the predictions clearly confirm the influence of the conjugate thermal mechanism.

参考

  1. Ambatipudi, K.K. and Rahman, M.M., Analysis of Conjugate Heat Transfer in Microchannel Heat Sinks, Numer. Heat Transf., Part A, vol. 37, pp. 711-731, 2000 .

  2. Amiri-Jaghargh, A. and Niazmand, H., Entrance Effects of Thermal Creep on Fluid Heating in Rectangular Microchannels, Int. J. Modern Phys. C, vol. 24, pp. 1350054-1-1350054-21, 2013 .

  3. Arkilic, E.B., Schmidt, M.A., and Breuer, K.S., Gaseous Slip Flow in Long Microchannels, J. Microelectromechan. Syst., vol. 6, pp. 167-178, 1997 .

  4. Cetin, B., Effect of Thermal Creep on Heat Transfer for a Two-Dimensional Microchannel Flow: An Analytical approach, J. Heat Transf., vol. 135, pp. 101007-1-101007-8, 2013 .

  5. Cetin, B. and Zeinali, S., Analysis of Heat Transfer and Entropy Generation for a Low-Peclet-Number Microtube Flow using a Second-Order Slip Model: An Extended-Graetz Problem, J. Eng. Math., vol. 89, pp. 13-25, 2014 .

  6. Colin, S., Gas Microflows in the Slip Flow Regime: A Critical Review on Convective Heat Transfer, J. Heat Transf., vol. 134, pp. 020908-1-020908-13, 2012 .

  7. Croce, G., Rovenskaya, O., and DAgaro, P., Computational Analysis of Conjugate Heat Transfer in Gaseous Microchannels, J. Heat Transf., vol. 137, pp. 041701-1-041701-7, 2015 .

  8. Duan, Z. and He, B., Extended Reynolds Analogy for Slip and Transition Flow Heat Transfer in Microchannels and Nanochannels, Int. Commun. Heat Mass Transf., vol. 56, pp. 25-30, 2014 .

  9. Escandon, J.P., Bautista, O., Mendez, F., and Bautista, E., Theoretical Conjugate Heat Transfer Analysis in a Parallel Flat Plate Microchannel under Electro-Osmotic and Pressure Forces with a Phan-Thientanner Fluid, Int. J. Therm. Sci., vol. 50, pp. 1022-1030, 2011 .

  10. Hadjiconstantinou, N.G. and Simek, O., Constant-Wall-Temperature Nusselt Number in Micro and Nano-Channels, J. Heat Transf., vol. 124, pp. 356-364, 2002 .

  11. Han, Y.L.,Working Gas Temperature and Pressure Changes for Microscale Thermal Creep-Driven Flow Caused by Discontinuous Wall Temperatures, Fluid Dynamics Res., vol. 42, p. 045505, 2010 .

  12. Hassan, I., Phutthavong, P., and Abdelgawad, M., Microchannel Heat Sinks: An Overview of the State-of-the-Art, Microscale Thermophys. Eng., vol. 8, pp. 183-205, 2004 .

  13. Hecht, F., New Develoment in Freefemm, J. Numer. Math., vol. 20, pp. 251-265, 2012 .

  14. Hetsroni, G., Mosyak, A., Pogrebnyak, E., and Yarin, L.P., Heat Transfer in Micro-Channels: Comparison of Experiments with Theory and Numerical Results, Int. J. Heat Mass Transf., vol. 48, pp. 5580-5601, 2005 .

  15. Hossainpour, S. and Khadem, M.H., Investigation of Fluid Flow and Heat Transfer Characteristics of Gases in Microchannels with Consideration of Different Roughness Shapes at Slip Flow Regime, Nanoscale Microscale Thermophys. Eng., vol. 14, p. 137-151, 2010 .

  16. Karniadakis, G., Beskok, A., and Aluru, N., Microflows and Nanoflows, Berlin: Springer, 2005 .

  17. Kosar, A., Effect of Substrate Thickness and Material on Heat Transfer in Microchannel Heat Sinks, Int. J. Therm. Sci., vol. 49, pp. 635-642, 2010 .

  18. Kushwaha, H.M. and Sahu, S.K., Analysis of Gaseous Flow in a Micropipe with Second Order Velocity Slip and Temperature Jump Boundary Conditions, Heat Mass Transf., vol. 50, pp. 1649-1659, 2014 .

  19. Lockerby, D.A., Reese, J.M., Emerson, D.R., and Barber, R.W., Velocity Boundary Condition at Solid Walls in Rarefied Gas Calculations, Phys. Rev. E, vol. 70, pp. 017303-1-017303-4, 2004 .

  20. Meolans, J.G. and Graur, I.A., Continuum Analytical Modelling of Thermal Creep, Euro. J. Mech. B/Fluids, vol. 27, pp. 785-809, 2008 .

  21. Rahimi, B. and Niazmand, H., Effects of High-Order Slip/Jump, Thermal Creep, and Variable Thermophysical Properties on Natural Convection in Microchannels with Constant Wall Heat Fluxes, Heat Transf. Eng., vol. 35, pp. 1528-1538, 2014 .

  22. Reynolds, O., On Certain Dimensional Properties of Matter in the Gaseous State, Phil. Trans. R. Soc. Lond., vol. 170, pp. 727-845, 1879 .

  23. Roldughin, V., Non-Equilibrium Thermodynamics of Boundary Conditions for Rarefied Gases and Related Phenomenal, Adv. Colloid Interface Sci., vol. 65, pp. 1-35, 1996 .

  24. van Rij, J., Harman, T., and Ameel, T., The Effect of Creep Flow on Two-Dimensional Isoflux Microchannels, Int. J. Therm. Sci., vol. 46, pp. 1095-1103, 2007 .

  25. Zade, A.Q., Renksizbulut, M., and Friedman, J., Heat Transfer Characteristics of Developing Gaseous Slip-Flow in Rectangular Microchannels with Variable Physical Properties, Int. J. Heat Fluid Flow, vol. 32, pp. 117-127, 2011 .

  26. Zhu, X., Liao, Q., and Xin, M.D., Gas Flow in Microchannel of Arbitrary Shape in Slip Flow Regime, Nanoscale Microscale Thermophys. Eng., vol. 10, pp. 41-54, 2006.


Articles with similar content:

VISCOUS DISSIPATION INFLUENCE ON NANOSCALE LIQUID METAL FLOWS
International Heat Transfer Conference 16, Vol.9, 2018, issue
L. Y. Zhang, Zenghui Wang
HEAT AND MASS TRANSFERS BY NATURAL CONVECTION DURING WATER EVAPORATION IN A VERTICAL CHANNEL
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 5
Olfa Mechergui, Ali Hatem Laatar, Xavier Chesneau
ENERGY TRANSPORT IN A SINGLE ROCK FRACTURE
International Heat Transfer Conference 9, Vol.6, 1990, issue
Krishnamurthy Muralidhar
TRANSPORT AND DEPOSITION IN MOCVD FOR THIN FILM FABRICATION OF HIGH TEMPERATURE SUPERCONDUCTORS
International Heat Transfer Conference 11, Vol.12, 1998, issue
Gregory H. Evans, Ralph Greif
CONJUGATED HEAT TRANSFER OF A RADIATIVELY PARTICIPATING GAS IN A CHANNEL
International Heat Transfer Conference 8, Vol.2, 1986, issue
Benjamin T. F. Chung, M. Kassemi