ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014007549
pages 383-397

EXPERIMENTAL STUDY ON A TWO-STAGE LIQUID DESICCANT DEHUMIDIFICATION SYSTEM USING DUAL DESICCANT SOLUTIONS

Zhenqin Xiong
School of Mechanical Engineering, Shanghai Jiao Tong University
R Z Wang
Shanghai Jiao Tong University
Yanjun Dai
Institute of Refrigeration and Cryogenics, Key Laboratory for Power Machinery and Engineering of M.O.E, Shanghai Jiao Tong University, Shanghai, 200240, China

要約

A two-stage liquid desiccant dehumidification system using a lithium chloride (LiCl) solution and a calcium chloride (CaCl2) solution respectively in the first- and second-stage dehumidifier was proposed through numerical analysis and exergy analysis in the previous study and it is improved by two methods, i.e., the high concentration variance and predehumidification of CaCl2. To assess its dehumidification performance and the predehumidification effect of the first-stage dehumidifier using CaCl2, an experimental study is carried out with dehumidifiers of the size 300 mm × 250 mm × 300 mm packed with Celdeck material under three typical conditions, i.e., ARI standard outdoor conditions, ARI dry outdoor conditions, and the typical summer outdoor conditions in Shanghai. It is proved that the humidity ratio of air after two-stage dehumidification under the ARI standard outdoor conditions and ARI dry outdoor conditions meets the requirement of the ARI indoor conditions when the LiCl concentration is in the range of 40−35% and the initial concentration of CaCl2 is 40%. It is founded that the predehumidification of a CaCl2 solution is significant. It can handle 20−63% of the total moisture load in the case studied. A parametric analysis has also been made. The results indicate that the humidity ratio after dehumidification is mainly influenced by the air velocity and the desiccant concentration of LiCl solution. The dehumidification performance deteriorates when the desiccant solution flow rate is around 300−400 kg/h due to the poor distribution of desiccant solutions on the packing material. The moisture removed by the CaCl2 solution depends on its concentration and the air velocity.


Articles with similar content:

PERFORMANCE COMPARISON OF DIRECT CONTACT - PACKED BED AND INDIRECT CONTACT - MEMBRANE DEHUMIDIFIERS
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
M. Prakash Maiya, A. Gurubalan, Shaligram Tiwari
Guidelines for Using 3-Nitro-L-Tyrosine as an Antidegradation Reagent of H2O2 in the Cold Atmospheric Plasma-Stimulated Solutions
Plasma Medicine, Vol.8, 2018, issue 2
Julian Milberg, Michael Keidar, Jonathan H. Sherman, Niki Nourmohammadi, Dayun Yan
ANALYSIS AND DESIGN OF PACKED BED LIQUID DESICCANT DEHUMIDIFIERS
International Heat Transfer Conference 10, Vol.13, 1994, issue
Arcot R Balakrishnan, M. Sadasivam
DEVELOPMENT OF PREMIXED BURNER BASED ON STABILIZED COMBUSTION WITHIN DISCRETE POROUS MEDIUM
Journal of Porous Media, Vol.14, 2011, issue 10
Abdulmajeed A. Mohamad, M. Abdul Mujeebu, M. Z. Abu Bakar, M. Z. Abdullah
HEAT TRANSFER AND AIR FLOW PATTERNS INSIDE AN AIR-CONDITIONED LARGE AUDITORIUM
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Waleed Abdel-Samee, Gamal El-Hariry, Essam E. Khalil