ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014007285
pages 749-766

NUMERICAL SIMULATION OF ELECTRICALLY CONDUCTING FLUID FLOW AND FREE CONVECTIVE HEAT TRANSFER IN AN ANNULUS ON APPLYING A MAGNETIC FIELD

Masoud Afrand
Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
Said Farahat
Department of Mechanical Engineering, University of Sistan and Baluchestan, Zahedan, Iran
Alireza Hossein Nezhad
Department of Mechanical Engineering, University of Sistan and Baluchestan, Zahedan, Iran
Ghanbar Ali Sheikhzadeh
Department of Mechanical Engineering, University of Kashan, Kashan, Iran
Faramarz Sarhaddi
Department of Mechanical Engineering, University of Sistan and Baluchestan, Zahedan, Iran

要約

The presence of free convective heat transfer in an enclosure filled with a congealing melt leads to the output of a product with a nonuniform structure involving large grains. On applying a proper magnetic field to the melt in the enclosure, the convective flows are decreased and uniform and small grain structures are obtained. In this work, using the finite volume method, we investigated the application of a magnetic field to the convective heat transfer and temperature fields in steady and laminar flows of melted gallium in a long annulus between two horizontal cylinders at the Prandtl number 0.02. The inner and outer walls of the annulus are at TC and TH temperatures, respectively, with TH > TC. We also investigated the effect of the magnetic field intensity and the Hartmann number on the flow and temperature fields, the influence of the variation of other parameters, like the Rayleigh number, the angle of magnetic field application, the ratio of the inner to outer radii of the annulus on the flow and temperature field. It has been reveales that on changing the field angle to the horizon, the Nusselt number (Nu) is increased, which is of importance in a specific range of Hartmann numbers. Also with increase in the Rayleigh number, the change in Nu with the magnetic field intensity does not occur. In studying the influence of the outer radius to inner radius ratio on Nu at a fixed Rayleigh number, we have found that with increase in the diameter ratio, the Nu number increases.


Articles with similar content:

NUMERICAL STUDY OF THE EFFECT OF A NANOFLUID WITH NANOPARTICLES OF NONUNIFORM SIZE ON NATURAL CONVECTION IN AN INCLINED ENCLOSURE
Nanoscience and Technology: An International Journal, Vol.8, 2017, issue 4
Sina Niazi, Mehrdad Naderi Beni
CONJUGATE HEAT TRANSFER IN POROUS ANNULUS
Journal of Porous Media, Vol.17, 2014, issue 12
Ahmed N. J. Salman, G. A. Quadir, T. M. Yunus Khan, Abdullah A. A. A. Al-Rashed, Sarfaraz Kamangar, H. M. T. Khaleed, Irfan Anjum Badruddin
EFFECT OF NANOFLUID VARIABLE PROPERTIES ON MIXED CONVECTION FLOW AND HEAT TRANSFER IN AN INCLINED TWO-SIDED LID-DRIVEN CAVITY WITH SINUSOIDAL HEATING ON SIDEWALLS
Heat Transfer Research, Vol.45, 2014, issue 5
Davood Semiromi Toghraie, Masoud Afrand, Mohammad Akbari, Arash Karimipour, Mohammad Hemmat Esfe
A Unified Correlation of Laminar Convective Heat Transfer from Hot and Cold Circular Cylinders in a Uniform Flow
International Journal of Fluid Mechanics Research, Vol.25, 1998, issue 4-6
Shin-Hyung Kang, K.-H. Hong, Sangken Kauh
AN ASYMPTOTIC ANALYSIS FOR THE TRANSIENT FREEZING AND LAMINAR FLOW IN A CIRCULAR PIPE
International Heat Transfer Conference 9, Vol.4, 1990, issue
J. Cervantes, Federico Mendez, Cesar Trevino