ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016007591
pages 139-159

OSCILLATORY FREE CONVECTION OF A MICROPOLAR ROTATING FLUID ON A VERTICAL PLATE WITH VARIABLE HEAT FLUX AND THERMAL RADIATION

Ahmed A. Bakr
Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut, Egypt
Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates, 10021

要約

This work is concerned with the analysis of the effects of thermal radiation on oscillatory free convection flow of a micropolar fluid in a rotating frame of reference in the presence of a variable wall heat flux, taking an oscillatory plate velocity and a constant suction velocity at the plate into account. The plate velocity is assumed to oscillate in time with a constant frequency, it is thus assumed that the solutions of the boundary layer are the same oscillatory type. The dimensionless governing equations for this investigation are solved analytically using small perturbation approximation. The effect of the various dimensionless parameters entering into the problem on the velocity, temperature, and concentration profiles across the boundary layer is investigated graphically. The results show that there exists completely oscillating behavior in the velocity distribution. It should be mentioned that various aspects of the considered problem have different applications. Unsteady oscillatory free convective flows play an important role in chemical engineering, turbomachinery, and in the aerospace technology either due to the unsteady motion of boundary or boundary temperature. Besides, unsteadiness may also be due to the oscillatory free stream velocity or temperature. In natural processes and industrial applications, many transport processes exist where transfer of heat and mass takes place simultaneously as a result of combined buoyancy effects of thermal diffusion and diffusion of chemical species. The phenomenon of heat and mass transfer is also very common in chemical process industries such as food processing and polymer production.


Articles with similar content:

Unsteady MHD Free Convection Flow Near a Moving Vertical Plate with Ramped Wall Temperature
International Journal of Fluid Mechanics Research, Vol.41, 2014, issue 1
S. Jana, Prabir Kumar Kundu, Kalidas Das
UNSTEADY CONVECTION HEAT AND MASS TRANSFER OF A FRACTIONAL OLDROYD-B FLUID WITH CHEMICAL REACTION AND HEAT SOURCE/SINK EFFECT
Heat Transfer Research, Vol.49, 2018, issue 13
Xinxin Zhang, Liancun Zheng, Fawang Liu, Jinhu Zhao
APPLICATION OF FINITE ELEMENT METHOD TO UNSTEADY MAGNETOHYDRODYNAMIC FREE-CONVECTION FLOW PAST A VERTICALLY INCLINED POROUS PLATE INCLUDING THERMAL DIFFUSION AND DIFFUSION THERMO EFFECTS
Journal of Porous Media, Vol.19, 2016, issue 8
Mohammad Mehdi Rashidi, B. Mahesh Reddy, Rama Subba Reddy Gorla, R. Srinivasa Raju
Effect of chemical reaction on Jeffrey fluid model of blood flow through tapered artery with thermo-diffusion and diffuso-thermal gradients
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.18, 2018, issue
Madhu Sharma, R. K. Gaur, Bhupendra K. Sharma
Effects of Hall Current and Rotation on Unsteady MHD Natural Convection Flow Past a Vertical Flat Plate with Ramped Wall Temperature and Heat Absorption
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Kamalesh K. Pandit, Dipak Sarma