ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018025525
pages 967-975

EFFECTIVE THERMAL CONDUCTIVITY OF CARBON NANOTUBE-BASED NANOFLUIDS AT HIGH TEMPERATURES

Haifeng Jiang
Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
Lin Shi
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Xuejiao Hu
Key Laboratory of Hydraulic Machinery Transients (Wuhan University), Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
Qingsong An
Key Laboratory of Efficient Utilization of Low and Medium Grade Energy of Ministry of Education, Tianjin University, Tianjin 300072, PR China

要約

This study investigated the effects of temperature (30–180°C) and CNT volume fraction (0.001–0.007) on the effective thermal conductivity of CNT-based nanofluids, which extended the temperature range of available experimental data. The experimental results agree well with the theoretical model. The thermal conductivity enhancement increases with increasing CNT volume fractions at less than 100°C. Higher volume fractions result in greater thermal conductivity enhancement with temperature. Above 120°C, the thermal conductivity enhancement decreases with increasing temperature due to various aggregate states of the nanoparticles at high temperatures. The present study demonstrates the thermal conduction mechanisms in CNT-based nanofluids at high temperatures.

参考

  1. Amrollahi, A., Hamidi, A.A., and Rashidi, A.M., The Effects of Temperature, Volume Fraction and Vibration Time on the Thermo- physical Properties of a Carbon Nanotube Suspension (Carbon Nanofluid), Nanotechnology, vol. 19, pp. 315701/1–8, 2008.

  2. Berber, S., Kwon, Y.K., and Tomanek, D., Unusually High Thermal Conductivity of Carbon Nanotubes, Phys. Rev. Lett., vol. 84, pp. 4613–4616, 2000.

  3. Bergin, S.D., Sun, Z., Rickard, D., Streich, P., Hamilton, J., and Coleman, J.N., Multicomponent Solubility Parameters for Single-Walled Carbon Nanotube-Solvent Mixtures, ACS Nano, vol. 3, pp. 2340–2350, 2009.

  4. Bergin, S.D., Sun, Z., Streich, P., Hamilton, J., and Coleman, J.N., New Solvents for Nanotubes: Approaching the Dispersibility of Surfactants, J. Phys. Chem. C, vol. 114, pp. 231–237, 2010.

  5. Che, J., Cagin, T., and Goddard, W.A., Thermal Conductivity of Carbon Nanotubes, Nanotechnology, vol. 11, pp. 65–69, 2000.

  6. Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F.E., and Grulke, E.A., Anomalously Thermal Conductivity Enhancement in Nanotube Suspension, Appl. Phys. Lett., vol. 79, pp. 2252–2254, 2001.

  7. Ding, Y.L., Alias, H., Wen, D.S., and Williams, R.A., Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids), Int. J. Heat Mass Transf., vol. 55, pp. 549–552, 2006.

  8. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., and Thompson, L.J., Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., vol. 78, pp. 718–720, 2001.

  9. Esfe, M.H., Alirezaie, A., and Rejvani, M., An Applicable Study on the Thermal Conductivity of SWCNT–MgO Hybrid Nanofluid and Price-Performance Analysis for Energy Management, Appl. Therm. Eng., vol. 111, pp. 1202–1210, 2017.

  10. Giordani, S., Bergin, S.D., Nicolosi, V., Lebedkin, S., Kappes, M.M., Blau, W.J., and Coleman, J.N., Debunding of Single-Walled Nanotubes by Dilution: Observation of Large Populations of Individual Nanotubes in Amide Solvent Dispersions, J. Phys. Chem. B, vol. 110, pp. 15708–15718, 2006.

  11. Iijima, S., Helical Microtubules of Graphitic Carbon, Nature, vol. 354, pp. 56–58, 1991.

  12. Indhuja, A., Suganthi, K.S., Manikandan, S., and Rajan, K.S., Viscosity and Thermal Conductivity of Dispersions of Gum Arabic Capped MWCNT in Water: Influence of MWCNT Concentration and Temperature, J. Taiwan Inst. Chem. Eng., vol. 44, pp. 474–479, 2013.

  13. Jang, S.P. and Choi, S.U.S., Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids, Appl. Phys. Lett., vol. 84, pp. 4316–4318, 2004.

  14. Jiang, H., Li, H., Xu, Q., and Shi, L., Effective Thermal Conductivity of Nanofluids Considering Interfacial Nano-Shells, Mater. Chem. Phys., vol. 148, pp. 195–200. 2014a.

  15. Jiang, H., Li, H., Zan, C., Wang, F., Yang, Q., and Shi, L., Temperature Dependence of the Stability and Thermal Conductivity of an Oil-Based Nanofluid, Thermochim. Acta, vol. 579, pp. 27–30, 2014b.

  16. Jiang, H., Xu, Q., Huang, C., and Shi, L., Effect of Temperature on the Effective Thermal Conductivity of N-tetradecane Based Nanofluids Containing Copper Nanoparticles, Particuology, vol. 22, pp. 95–99, 2015a.

  17. Jiang, H., Xu, Q., Huang, C., and Shi, L., The Role of Interfacial Nanolayer in the Enhanced Thermal Conductivity of Carbon Nanotube-Based Nanofluids, Appl. Phys. A: Mater. Sci. Process., vol. 118, pp. 197–205, 2015b.

  18. Jiang, H., Zhang, Q., and Shi, L., Effective Thermal Conductivity of Carbon Nanotube-Based Nanofluid, J. Taiwan Inst. Chem. Eng., vol. 55, pp. 76–81, 2015c.

  19. Jiang, W., Ding, G., and Peng, H., Measurement and Model on Thermal Conductivities of Carbon Nanotube Nanorefrigerants, Int. J. Therm. Sci., vol. 48, pp. 1108–1115, 2009.

  20. Keblinski, P., Phillpot, S.R., Choi, S.U.S., and Eastman, J.A., Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), Int. J. Heat Mass Transf., vol. 45, pp. 855–863, 2002.

  21. Kotia, A. and Ghosh, S.K., Heat Transfer Analysis of Nanofluid Considering the Interfacial Nanolayer, Heat Transf. Res., vol. 48, pp. 549–556, 2017.

  22. Lee, S., Choi, S.U.S., Li, S., and Eastman, J.A., Measuring Thermal Conductivity of Fluids Containing Oxide Nanofluids, Trans. ASME, J. Heat Transf., vol. 121, pp. 280–289, 1999.

  23. Liu, M., Ding, C., and Wang, J., Modeling of Thermal Conductivity of Nanofluids Considering Aggregation and Interfacial Thermal Resistance, RSC Adv., vol. 6, pp. 3571–3577, 2016.

  24. Liu, J.M., Liu, Z.H., and Chen, Y.J., Experiment and Calculation of the Thermal Conductivity of Nanofluid under Electric Field, Int. J. Heat Mass Transf., vol. 107, pp. 6–12, 2017.

  25. Lotfizadeh, S. and Matsoukas, T., A Continuum Maxwell Theory for the Thermal Conductivity of Clustered Nanocolloids, J. Nanopart. Res., vol. 17, pp. 262/1–7, 2015.

  26. Nagasaka, Y. and Nagashima, A., Simultaneous Measurements of the Thermal Conductivity and Thermal Diffusivity of Liquids by the Transient Hot-Wire Method, Rev. Sci. Instrum., vol. 52, pp. 229–232, 1981a.

  27. Nagasaka, Y. and Nagashima, A., Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method, J. Phys. E: Sci. Instrum., vol. 14, pp. 1435–1440, 1981b.

  28. Nan, C.W., Birringer, R., Clarke, D.R., and Gleiter, H., Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance, J. Appl. Phys., vol. 81, pp. 6692–6699, 1997.

  29. Nan, C.W., Liu, G., Lin, Y., and Li, M., Interface Effect on Thermal Conductivity of Carbon Nanotube Composites, Appl. Phys. Lett., vol. 85, pp. 3549–3551, 2004.

  30. Prasher, R., Evans, W., Meakin, P., Fish, J., Phelan, P., and Keblinski, P., Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids, Appl. Phys. Lett., vol. 89, pp. 143119/1–3, 2006.

  31. Prasher, R., Phelan, P.E., and Bhattacharya, P., Effect of Aggregation Kinetics on the Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluid), Nano Lett., vol. 6, pp. 1529–1534, 2006.

  32. Ramires, M.L.V., Nieto de Casto, C.A., Perkins, R.A., Nagasaka, Y., Assael, M.J., and Wakeham, W.A., Reference Data for the Thermal Conductivity of Saturated Liquid Toluene over a Wide Range of Temperature, J. Phys. Chem. Refer. Data, vol. 29, pp. 133–139, 2000.

  33. Sabiha, M.A., Mostafizur, R.M., Saidur, R., and Mekhilef, S., Experimental Investigation on Thermo Physical Properties of Single Walled Carbon Nanotube Nanofluids, Int. J. Heat Mass Transf., vol. 93, pp. 862–871, 2016.

  34. Sadri, R., Ahmadi, G., Togun, H., Dahari, M., Kazi, S.N., Sadeghinezhad, E., and Zubir, N., An Experimental Study on Thermal Conductivity and Viscosity of Nanofluids Containing Carbon Nanotubes, Nanoscale Res. Lett., vol. 9, pp. 151–166, 2014.

  35. Satti, J.R., Das, D.K., and Ray, D., Investigation of the Thermal Conductivity of Propylene Glycol Nanofluids and Comparison with Correlations, Int. J. Heat Mass Transf., vol. 107, pp. 871–881, 2017.

  36. Shih, C., Lin, S., Strano, M.S., and Blankschtein, D., Understanding the Stabilization of Liquid-Phase-Exfoliated Graphene in Polar Solvent: Molecular Dynamics Simulations and Kinetic Theory of Colloid Aggregation, J. Am. Chem. Soc., vol. 132, pp. 14638–14648, 2010.

  37. Sui, J., Zheng, L., Zhang, X., Chen, Y., and Cheng, Z., A Novel Equivalent Agglomeration Model for Heat Conduction Enhancement in Nanofluids, Sci. Rep., vol. 6, pp. 19560/1–9, 2016.

  38. Tavman, I., Turgut, A., Chirtoc, M., Hadjov, K., Fudym, O., and Tavman, S., Experimental Study on Thermal Conductivity and Viscosity of Water-Based Nanofluids, Heat Transf. Res., vol. 41, pp. 339–351, 2010.

  39. Trinh, P.V., Anh, N.N., Thang, B.H., Quang, L.D., Hong, N.T., Hong, N.M., Khoi, P.H., Minh, P.N., and Hong, P.N., Enhanced Thermal Conductivity of Nanofluid-Based Ethylene Glycol Containing Cu Nanoparticles Decorated on a Gr–MWCNT Hybrid Material, RSC Adv., vol. 7, pp. 318–326, 2017.

  40. Wen, D.S. and Ding, Y.L., Effective Thermal Conductivity of Aqueous Suspensions of Carbon Nanotubes (Carbon Nanotube Nanofluids), J. Thermophys. Heat Transf., vol. 18, pp. 481–485, 2004.

  41. Wu, J., Zheng, H., Qian, X., Li, X., and Assael, M.J., Thermal Conductivity of Liquid 1,2-dimethoxyethane from 243 K to 353 K at Pressures up to 30 MPa, Int. J. Thermophys., vol. 30, pp. 385–396, 2009.

  42. Xie, H. and Chen, L., Review on the Preparation and Thermal Performances of Carbon Nanotube Contained Nanofluids, J. Chem. Eng. Data, vol. 56, pp. 1030–1041, 2011.

  43. Xie, H., Cai, A., and Wang, X., Thermal Diffusivity and Conductivity of Multiwalled Carbon Nanotube Arrays, Phys. Lett. A, vol. 369, pp. 120–123, 2007.

  44. Xie, H., Lee, H., Youn, W., and Choi, M., Nanofluids Containing Multiwalled Carbon Nanotubes and Their Enhanced Thermal Conductivities, J. Appl. Phys., vol. 94, pp. 4967–4971, 2003.

  45. Yu, W. and Choi, S.U.S., The Role of Interfacial Layers in the Enhancement Thermal Conductivity of Nanofluids: A Renovated Maxwell Model, J. Nanopart. Res., vol. 5, pp. 167–171, 2003.

  46. Zhang, Q., Huang, J.Q., Qian, W.Z., Zhang, Y.Y., and Wei, F., The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Post-Treatment, and Bulk Applications for Composite and Energy Storage, Small, vol. 9, pp. 1237– 1265, 2013.

  47. Zhang, Q., Huang, J.Q., Zhao, M.Q., Qian, W.Z., and Wei, F., Carbon Nanotube Mass Production: Principles and Processes, ChemSusChem, vol. 4, pp. 864–889, 2011.

  48. Zhang, X., Gu, H., and Fujii, M., Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids Containing Spherical and Cylindrical Nanoparticles, J. Appl. Phys., vol. 100, pp. 044325/1–5, 2006.


Articles with similar content:

TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY EVALUATION OF ALUMINA BASED NANOFLUIDS
International Heat Transfer Conference 13, Vol.0, 2006, issue
Cong Tam Nguyen, Gilles C. Roy, D. Doucet, S. Suiro, Thierry Mare
PREPARATION AND CHARACTERIZATION OF NANOFLUIDS CONTAINING ALUMINA PARTICLES
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2011, issue
Alpaslan Turgut, Mihail Chirtoc, Olivier Fudym, Ismail Tavman, Levent Cetin
THERMAL CONDUCTIVITY ENHANCEMENT OF PHASE CHANGE NANOCOMPOSITES IN SOLID AND LIQUID STATE WITH NANO CARBON INCLUSIONS
International Heat Transfer Conference 16, Vol.24, 2018, issue
Daniel Orejon, Yasuyuki Takata, Masamichi Kohno, Sivasankaran Harish
Temperature Dependent Thermal Transport Across the Interfaces Between Cnt Array and Adjacent Layers
International Heat Transfer Conference 15, Vol.33, 2014, issue
Yong Ma, Zhaoliang Wang, J.G. Liang, Dawei Tang
MEASUREMENT OF INTRINSIC THERMAL CONDUCTIVITY OF DLC AND THERMAL BOUNDARY RESISTANCE BY WIDE FREQUENCY 3ω METHOD
International Heat Transfer Conference 16, Vol.8, 2018, issue
Mingman Sun, Jia Li, Zhaoliang Wang